江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷含解析_第1頁
江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷含解析_第2頁
江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷含解析_第3頁
江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷含解析_第4頁
江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.52.下列運(yùn)算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x63.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個(gè)頂點(diǎn)O在坐標(biāo)原點(diǎn),一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于()A.30 B.40 C.60 D.804.給出下列各數(shù)式,①②③④計(jì)算結(jié)果為負(fù)數(shù)的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.6.如圖,中,E是BC的中點(diǎn),設(shè),那么向量用向量表示為()A. B. C. D.7.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為()A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=18.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點(diǎn)F,則的面積為()A.4 B.6 C.8 D.109.如圖,在⊙O中,O為圓心,點(diǎn)A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°10.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.311.下列幾何體中三視圖完全相同的是()A. B. C. D.12.不等式組的解在數(shù)軸上表示為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE是BC的垂直平分線,點(diǎn)E是垂足.若DC=2,AD=1,則BE的長為______.14.圖①是一個(gè)三角形,分別連接這個(gè)三角形的中點(diǎn)得到圖②;再分別連接圖②中間小三角形三邊的中點(diǎn),得到圖③.按上面的方法繼續(xù)下去,第n個(gè)圖形中有_____個(gè)三角形(用含字母n的代數(shù)式表示).15.在數(shù)軸上與所對(duì)應(yīng)的點(diǎn)相距4個(gè)單位長度的點(diǎn)表示的數(shù)是______.16.已知一個(gè)正六邊形的邊心距為,則它的半徑為______.17.如圖,AB=AC,要使△ABE≌△ACD,應(yīng)添加的條件是(添加一個(gè)條件即可).18.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),使AE=CF,連接AF、BE相交于點(diǎn)P,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)P經(jīng)過點(diǎn)的路徑長為__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)西安匯聚了很多人們耳熟能詳?shù)年兾髅朗常钊A和王濤同時(shí)去選美食,李華準(zhǔn)備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準(zhǔn)備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請(qǐng)用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.20.(6分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對(duì)角線AC上時(shí),如圖所示,半圓與AB的交點(diǎn)為M,求AM的長;(2)半圓與直線CD相切時(shí),切點(diǎn)為N,與線段AD的交點(diǎn)為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),設(shè)此交點(diǎn)與點(diǎn)C的距離為d,直接寫出d的取值范圍.21.(6分)甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?22.(8分)(1)計(jì)算:;(2)解不等式組:23.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時(shí),求⊙O的面積.24.(10分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點(diǎn),且BE=DF,求證:AE=CF25.(10分)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請(qǐng)你利用(1)的結(jié)論證明:GE=BE+GD;運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.26.(12分)甲、乙兩組工人同時(shí)加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時(shí)間(時(shí))的函數(shù)圖象如圖所示.(1)求甲組加工零件的數(shù)量y與時(shí)間之間的函數(shù)關(guān)系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時(shí)間忽略不計(jì),求經(jīng)過多長時(shí)間恰好裝滿第1箱?再經(jīng)過多長時(shí)間恰好裝滿第2箱?27.(12分)已知是上一點(diǎn),.如圖①,過點(diǎn)作的切線,與的延長線交于點(diǎn),求的大小及的長;如圖②,為上一點(diǎn),延長線與交于點(diǎn),若,求的大小及的長.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項(xiàng);設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【點(diǎn)睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對(duì)有關(guān)于四邊形的性質(zhì)的知識(shí)有一系統(tǒng)的掌握.2、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項(xiàng),冪的乘方與積的乘方運(yùn)算法則逐一計(jì)算作出判斷:A、x?x4=x5,原式計(jì)算正確,故本選項(xiàng)正確;B、x6÷x3=x3,原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;C、3x2﹣x2=2x2,原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;D、(2x2)3=8x,原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤.故選A.3、B【解析】

過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點(diǎn)A的坐標(biāo)為(a,a).∵點(diǎn)A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點(diǎn)F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.4、B【解析】∵①;②;③;④;∴上述各式中計(jì)算結(jié)果為負(fù)數(shù)的有2個(gè).故選B.5、B【解析】選項(xiàng)中,由圖可知:在,;在,,∴,所以A錯(cuò)誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以B正確;選項(xiàng)中,由圖可知:在,;在,,∴,所以C錯(cuò)誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以D錯(cuò)誤.故選B.點(diǎn)睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢(shì)確定出兩個(gè)解析式中“”的符號(hào),看兩者的符號(hào)是否一致即可判斷它們?cè)谕蛔鴺?biāo)系中的圖象情況,而這與“b”的取值無關(guān).6、A【解析】

根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點(diǎn)睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考常考題型.7、B【解析】試題分析:根據(jù)作圖方法可得點(diǎn)P在第二象限角平分線上,則P點(diǎn)橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.8、C【解析】

根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個(gè)圖中BD=AB-AD=4,第三個(gè)圖中AB=AD-BD=2,

因?yàn)锽C∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點(diǎn)睛:

本題利用了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識(shí)點(diǎn).9、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點(diǎn)睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半是解題的關(guān)鍵.10、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點(diǎn)睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.11、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯(cuò)誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯(cuò)誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯(cuò)誤;故選A.【點(diǎn)睛】考查三視圖的有關(guān)知識(shí),注意三視圖都相同的常見的幾何體有球和正方體.12、C【解析】

先解每一個(gè)不等式,再根據(jù)結(jié)果判斷數(shù)軸表示的正確方法.【詳解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴數(shù)軸表示的正確方法為C.故選C.【點(diǎn)睛】考核知識(shí)點(diǎn):解不等式組.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點(diǎn)睛:本題考查的是線段的垂直平分線的性質(zhì)、角平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.14、4n﹣1【解析】

分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),可以發(fā)現(xiàn):第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去如圖中三角形的個(gè)數(shù)為按照這個(gè)規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;可以發(fā)現(xiàn),第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去1.按照這個(gè)規(guī)律,如果設(shè)圖形的個(gè)數(shù)為n,那么其中三角形的個(gè)數(shù)為.故答案為.【點(diǎn)睛】此題主要考查學(xué)生對(duì)圖形變化類這個(gè)知識(shí)點(diǎn)的理解和掌握,解答此類題目的關(guān)鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認(rèn)真思考,歸納總結(jié)出規(guī)律,此類題目難度一般偏大,屬于難題.15、2或﹣1【解析】解:當(dāng)該點(diǎn)在﹣2的右邊時(shí),由題意可知:該點(diǎn)所表示的數(shù)為2,當(dāng)該點(diǎn)在﹣2的左邊時(shí),由題意可知:該點(diǎn)所表示的數(shù)為﹣1.故答案為2或﹣1.點(diǎn)睛:本題考查數(shù)軸,涉及有理數(shù)的加減運(yùn)算、分類討論的思想.16、2【解析】試題分析:設(shè)正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點(diǎn)睛:本題主要考查正多邊形和圓的關(guān)系.解題的關(guān)鍵在于利用正多邊形的半徑、邊心距構(gòu)造直角三角形并利用解直角三角形的知識(shí)求解.17、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).18、π.【解析】

由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點(diǎn)P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.【詳解】:∵△ABC為等邊三角形,

∴AB=AC,∠C=∠CAB=60°,

又∵AE=CF,

在△ABE和△CAF中,,

∴△ABE≌△CAF(SAS),

∴∠ABE=∠CAF.

又∵∠APE=∠BPF=∠ABP+∠BAP,

∴∠APE=∠BAP+∠CAF=60°.

∴∠APB=180°-∠APE=120°.

∴當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,且∠AOB=120°,

又∵AB=6,

∴OA=2,

點(diǎn)P的路徑是l=,

故答案為.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,弧線長公式的運(yùn)用,解題的關(guān)鍵是證明三角形全等.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)見解析.【解析】

(1)直接根據(jù)概率的意義求解即可;(2)列出表格,再找到李華和王濤同時(shí)選擇的美食都是涼皮的情況數(shù),利用概率公式即可求得答案.【詳解】解:(1)李華選擇的美食是羊肉泡饃的概率為;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16種情況,其中李華和王濤選擇的美食都是涼皮的結(jié)果數(shù)為2,所以李華和王濤選擇的美食都是涼皮的概率為=.【點(diǎn)睛】本題涉及樹狀圖或列表法的相關(guān)知識(shí),難度中等,考查了學(xué)生的分析能力.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,則四邊形DGON為矩形,進(jìn)而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進(jìn)而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進(jìn)而可得出CN的長度,畫出點(diǎn)B′在直線CD上的圖形,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),利用勾股定理可求出B′D的長度進(jìn)而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí)d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當(dāng)點(diǎn)B′在直線CD上時(shí),如圖4所示,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當(dāng)點(diǎn)B′在點(diǎn)D右邊時(shí),半圓交直線CD于點(diǎn)D、B′.∴當(dāng)半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),4-≤d<4或d=4+.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.21、(1);(2)80米/分;(3)6分鐘【解析】

(1)根據(jù)圖示,設(shè)線段AB的表達(dá)式為:y=kx+b,把把(4,240),(16,0)代入得到關(guān)于k,b的二元一次方程組,解之,即可得到答案,

(2)根據(jù)線段OA,求出甲的速度,根據(jù)圖示可知:乙在點(diǎn)B處追上甲,根據(jù)速度=路程÷時(shí)間,計(jì)算求值即可,

(3)根據(jù)圖示,求出二者相遇時(shí)與出發(fā)點(diǎn)的距離,進(jìn)而求出與終點(diǎn)的距離,結(jié)合(2)的結(jié)果,分別計(jì)算出相遇后,到達(dá)終點(diǎn)甲和乙所用的時(shí)間,二者的時(shí)間差即可所求答案.【詳解】(1)根據(jù)題意得:

設(shè)線段AB的表達(dá)式為:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即線段AB的表達(dá)式為:y=-20x+320(4≤x≤16),

(2)又線段OA可知:甲的速度為:=60(米/分),

乙的步行速度為:=80(米/分),

答:乙的步行速度為80米/分,

(3)在B處甲乙相遇時(shí),與出發(fā)點(diǎn)的距離為:240+(16-4)×60=960(米),

與終點(diǎn)的距離為:2400-960=1440(米),

相遇后,到達(dá)終點(diǎn)甲所用的時(shí)間為:=24(分),

相遇后,到達(dá)終點(diǎn)乙所用的時(shí)間為:=18(分),

24-18=6(分),

答:乙比甲早6分鐘到達(dá)終點(diǎn).【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,正確掌握分析函數(shù)圖象是解題的關(guān)鍵.22、(1);(2).【解析】

(1)根據(jù)冪的運(yùn)算與實(shí)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.(2)先整理為最簡形式,再解每一個(gè)不等式,最后求其解集.【詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算和解一元一次不等式組,熟練掌握和運(yùn)用相關(guān)運(yùn)算性質(zhì)是解答關(guān)鍵.23、(1)證明見解析;(2)2516【解析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對(duì)內(nèi)錯(cuò)角相等,再由OA=OD,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到AD為角平分線,利用相等的圓周角所對(duì)的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個(gè)圓周角相等,及一對(duì)直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點(diǎn)睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.24、詳見解析【解析】

根據(jù)平行四邊形的性質(zhì)和已知條件證明△ABE≌△CDF,再利用全等三角形的性質(zhì):即可得到AE=CF.【詳解】證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他證法也可)25、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點(diǎn)F.則四邊形ABCF是正方形,設(shè)DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論