2022年江蘇省儀征市市級名校中考考前最后一卷數學試卷含解析_第1頁
2022年江蘇省儀征市市級名校中考考前最后一卷數學試卷含解析_第2頁
2022年江蘇省儀征市市級名校中考考前最后一卷數學試卷含解析_第3頁
2022年江蘇省儀征市市級名校中考考前最后一卷數學試卷含解析_第4頁
2022年江蘇省儀征市市級名校中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年江蘇省儀征市市級名校中考考前最后一卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°2.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.3.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山4.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④5.函數與在同一坐標系中的大致圖象是()A、B、C、D、6.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.7.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:28.下列計算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2?a3=a6D.﹣3a2+2a2=﹣a29.下列函數是二次函數的是()A. B. C. D.10.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數是()A.70° B.80° C.110° D.140°11.a、b是實數,點A(2,a)、B(3,b)在反比例函數y=﹣的圖象上,則()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a12.隨著我國綜合國力的提升,中華文化影響日益增強,學中文的外國人越來越多,中文已成為美國居民的第二外語,美國常講中文的人口約有210萬,請將“210萬”用科學記數法表示為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,菱形ABCD的頂點A的坐標為(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上.若拋物線y=-x2-5x+c經過點B、C,則菱形ABCD的面積為_______.14.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.15.某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進行了統(tǒng)計,繪制了如圖1和圖2所示的統(tǒng)計圖,則B品牌粽子在圖2中所對應的扇形的心角的度數是_____.16.如圖,經過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.17.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.18.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點M、N;②分別以點M、N為圓心,以大于的長為半徑作弧,兩弧相交于點E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點O,連接OC,則OC=________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)趙亮同學想利用影長測量學校旗桿的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測得其長度為9.6米和2米,則學校旗桿的高度為________米.20.(6分)已知,如圖所示直線y=kx+2(k≠0)與反比例函數y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,(1)求一次函數的解析式.(2)若AC是△PCB的中線,求反比例函數的關系式.21.(6分)定義:對于給定的二次函數y=a(x﹣h)2+k(a≠0),其伴生一次函數為y=a(x﹣h)+k,例如:二次函數y=2(x+1)2﹣3的伴生一次函數為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數y=(x﹣1)2﹣4,則其伴生一次函數的表達式為_____;(2)試說明二次函數y=(x﹣1)2﹣4的頂點在其伴生一次函數的圖象上;(3)如圖,二次函數y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數的圖象與x軸、y軸分別交于點B、A,且兩函數圖象的交點的橫坐標分別為1和2,在∠AOB內部的二次函數y=m(x﹣1)2﹣4m的圖象上有一動點P,過點P作x軸的平行線與其伴生一次函數的圖象交于點Q,設點P的橫坐標為n,直接寫出線段PQ的長為時n的值.22.(8分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.23.(8分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.24.(10分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.25.(10分)如圖,一座鋼結構橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.(1)求sinB的值;(2)現需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.26.(12分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(n,0)(1)點C坐標為;(2)求出小球飛行中最高點N的坐標(用含有n的代數式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.27.(12分)先化簡,再求代數式()÷的值,其中a=2sin45°+tan45°.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應用.【詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【點睛】考查平行線的判定,掌握平行線的判定定理是解題的關鍵.2、A【解析】試題分析:根據垂徑定理的推論,知此圓的圓心在CD所在的直線上,設圓心是O.連接OA.根據垂徑定理和勾股定理求解.得AD=6設圓的半徑是r,根據勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應用.3、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.4、B【解析】根據中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發(fā)現,當涂黑②時,所形成的圖形關于點A中心對稱。故選B。5、D.【解析】試題分析:根據一次函數和反比例函數的性質,分k>0和k<0兩種情況討論:當k<0時,一次函數圖象過二、四、三象限,反比例函數中,-k>0,圖象分布在一、三象限;當k>0時,一次函數過一、三、四象限,反比例函數中,-k<0,圖象分布在二、四象限.故選D.考點:一次函數和反比例函數的圖象.6、B【解析】

根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.7、D【解析】

依據平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.8、D【解析】

根據各個選項中的式子可以計算出正確的結果,從而可以解答本題.【詳解】-aa-b2a2-3a故選:D.【點睛】考查整式的除法,完全平方公式,同底數冪相乘以及合并同類項,比較基礎,難度不大.9、C【解析】

根據一次函數的定義,二次函數的定義對各選項分析判斷利用排除法求解.【詳解】A.y=x是一次函數,故本選項錯誤;B.y=是反比例函數,故本選項錯誤;C.y=x-2+x2是二次函數,故本選項正確;D.y=右邊不是整式,不是二次函數,故本選項錯誤.故答案選C.【點睛】本題考查的知識點是二次函數的定義,解題的關鍵是熟練的掌握二次函數的定義.10、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內接四邊形的性質得到∠P=40°,然后根據圓周角定理求∠AOC的度數.詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.11、A【解析】解:∵,∴反比例函數的圖象位于第二、四象限,在每個象限內,y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數的圖象上,∴a<b<0,故選A.12、B【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】210萬=2100000,2100000=2.1×106,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據拋物線的解析式結合拋物線過點B、C,即可得出點C的橫坐標,由菱形的性質可得出AD=AB=BC=1,再根據勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【詳解】拋物線的對稱軸為x=-.∵拋物線y=-x2-1x+c經過點B、C,且點B在y軸上,BC∥x軸,∴點C的橫坐標為-1.∵四邊形ABCD為菱形,∴AB=BC=AD=1,∴點D的坐標為(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD?OB=1×4=3.故答案為3.【點睛】本題考查了二次函數圖象上點的坐標特征、二次函數的性質、菱形的性質以及平行四邊形的面積,根據二次函數的性質、菱形的性質結合勾股定理求出AD=1、OB=4是解題的關鍵.14、1【解析】

根據題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數據可得答案.【詳解】根據題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數據可得DC2=31,DC=1,故答案為1.15、120°【解析】

根據圖1中C品牌粽子1200個,在圖2中占50%,求出三種品牌粽子的總個數,再求出B品牌粽子的個數,從而計算出B品牌粽子占粽子總數的比例,從而求出B品牌粽子在圖2中所對應的圓心角的度數.【詳解】解:∵三種品牌的粽子總數為1200÷50%=2400個,又∵A、C品牌的粽子分別有400個、1200個,∴B品牌的粽子有2400-400-1200=800個,則B品牌粽子在圖2中所對應的圓心角的度數為360×.故答案為120°.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?6、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.17、1.【解析】

連接BD,如圖,根據圓周角定理得到∠ABD=90°,則利用互余計算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數.【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理.18、.【解析】

直接利用勾股定理的逆定理結合三角形內心的性質進而得出答案.【詳解】過點O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.【點睛】此題主要考查了基本作圖以及三角形的內心,正確得出OD的長是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、10【解析】試題分析:根據相似的性質可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點:相似的應用20、(2)y=2x+2;(2)y=.【解析】

(2)由cos∠ABO=,可得到tan∠ABO=2,從而可得到k=2;(2)先求得A、B的坐標,然后依據中點坐標公式可求得點P的坐標,將點P的坐標代入反比例函數的解析式可求得m的值.【詳解】(2)∵cos∠ABO=,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函數的解析式為y=2x+2.(2)當x=0時,y=2,∴A(0,2).當y=0時,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中線,∴P(2,4).∴m=xy=2×4=4,∴反例函數的解析式為y=.【點睛】本題主要考查的是反比例函數與一次函數的交點、銳角三角函數的定義、中點坐標公式的應用,確定一次函數系數k=tan∠ABO是解題的關鍵.21、y=x﹣5【解析】分析:(1)根據定義,直接變形得到伴生一次函數的解析式;(2)求出頂點,代入伴生函數解析式即可求解;(3)根據題意得到伴生函數解析式,根據P點的坐標,坐標表示出縱坐標,然后通過PQ與x軸的平行關系,求得Q點的坐標,由PQ的長列方程求解即可.詳解:(1)∵二次函數y=(x﹣1)2﹣4,∴其伴生一次函數的表達式為y=(x﹣1)﹣4=x﹣5,故答案為y=x﹣5;(2)∵二次函數y=(x﹣1)2﹣4,∴頂點坐標為(1,﹣4),∵二次函數y=(x﹣1)2﹣4,∴其伴生一次函數的表達式為y=x﹣5,∴當x=1時,y=1﹣5=﹣4,∴(1,﹣4)在直線y=x﹣5上,即:二次函數y=(x﹣1)2﹣4的頂點在其伴生一次函數的圖象上;(3)∵二次函數y=m(x﹣1)2﹣4m,∴其伴生一次函數為y=m(x﹣1)﹣4m=mx﹣5m,∵P點的橫坐標為n,(n>2),∴P的縱坐標為m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x軸,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵線段PQ的長為,∴(n﹣1)2+1﹣n=,∴n=.點睛:此題主要考查了新定義下的函數關系式,關鍵是理解新定義的特點構造伴生函數解析式.22、(1)見解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質得OD⊥DF,則根據等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以OH=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點,∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理.23、(1)見解析;(2)2.【解析】

(1)四邊形ABCD是平行四邊形,由平行四邊形的性質,可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點睛】此題考查平行四邊形的性質及判斷,考查菱形的判斷及性質,及解直角三角形,解題關鍵在于掌握判定定理和利用三角函數進行計算.24、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論