版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年貴州省畢節(jié)市實驗高級中學(xué)高一下數(shù)學(xué)期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角是第三象限的角,則角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角2.某幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.3.設(shè)等比數(shù)列的前項和為,若,則()A. B. C. D.4.在中,分別是角的對邊,,則角為()A. B. C. D.或5.在等差數(shù)列中,,是方程的兩個根,則的前14項和為()A.55 B.60 C.65 D.706.在中,,是的內(nèi)心,若,其中,動點的軌跡所覆蓋的面積為(
)A. B. C. D.7.從裝有兩個紅球和兩個黑球的口袋里任取兩個球,那么對立的兩個事件是()A.“至少有一個黑球”與“都是黑球”B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球”D.“至少有一個黑球”與“都是紅球”8.已知數(shù)列是公比為2的等比數(shù)列,滿足,設(shè)等差數(shù)列的前項和為,若,則()A.34B.39C.51D.689.在中,內(nèi)角所對的邊分別為,且,,,則()A. B. C. D.10.如圖,矩形ABCD中,點E為邊CD的中點,若在矩形ABCD內(nèi)部隨機取一個點Q,則點Q取自△ABE內(nèi)部的概率等于A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為__________.12.實數(shù)x、y滿足,則的最大值為________.13.已知點和點,點在軸上,若的值最小,則點的坐標(biāo)為______.14.直線和將單位圓分成長度相等的四段弧,則________.15.已知等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項和=________.16.有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內(nèi)放一個半徑為的鐵球,并注入水,使水面與球正好相切,然后將球取出,則這時容器中水的深度為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)將化為的形式(,,)并求的最小正周期;(2)設(shè),若在上的值域為,求實數(shù)、的值;(3)若對任意的和恒成立,求實數(shù)取值范圍.18.已知、、是同一平面內(nèi)的三個向量,其中=(1,2),=(﹣2,3),=(﹣2,m)(1)若⊥(+),求||;(2)若k+與2﹣共線,求k的值.19.某地區(qū)有小學(xué)21所,中學(xué)14所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取5所學(xué)校,對學(xué)生進行視力檢查.(1)求應(yīng)從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目;(2)若從抽取的5所學(xué)校中抽取2所學(xué)校作進一步數(shù)據(jù)分析:①列出所有可能抽取的結(jié)果;②求抽取的2所學(xué)校至少有一所中學(xué)的概率.20.高一某班以小組為單位在周末進行了一次社會實踐活動,且每小組有5名同學(xué),活動結(jié)束后,對所有參加活動的同學(xué)進行測評,其中A,B兩個小組所得分數(shù)如下表:A組8677809488B組9183?7593其中B組一同學(xué)的分數(shù)已被污損,看不清楚了,但知道B組學(xué)生的平均分比A組學(xué)生的平均分高出1分.(1)若從B組學(xué)生中隨機挑選1人,求其得分超過85分的概率;(2)從A組這5名學(xué)生中隨機抽取2名同學(xué),設(shè)其分數(shù)分別為m,n,求的概率.21.已知函數(shù).(1)求的值;(2)設(shè),求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
可采取特殊化的思路求解,也可將各象限分成兩等份,再從x軸正半軸起,逆時針依次將各區(qū)域標(biāo)上一?二?三?四,則標(biāo)有三的即為所求區(qū)域.【詳解】(方法一)取,則,此時角為第二象限的角;取,則,此時角為第四象限的角.(方法二)如圖,先將各象限分成兩等份,再從x軸正半軸起,逆時針依次將各區(qū)域標(biāo)上一?二?三?四,則標(biāo)有三的區(qū)域即為角的終邊所在的區(qū)域,故角為第二或第四象限的角.故選:D【點睛】本題主要考查了根據(jù)所在象限求所在象限的方法,屬于中檔題.2、D【解析】
先還原幾何體,再根據(jù)形狀求表面積.【詳解】由三視圖知,該幾何體的直觀圖如圖所示,其表面積為,故選.【點睛】本題考查三視圖以及幾何體表面積,考查空間想象能力以及基本求解能力,屬中檔題.3、C【解析】
根據(jù)等比數(shù)列性質(zhì):成等比數(shù)列,計算得到,,,計算得到答案.【詳解】根據(jù)等比數(shù)列性質(zhì):成等比數(shù)列,設(shè)則,;故選:C【點睛】本題考查了數(shù)列的前N項和,利用性質(zhì)成等比數(shù)列可以簡化運算,是解題的關(guān)鍵.4、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【詳解】在中,因為,由正弦定理,可得,又由,且,所以或,故選D.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練利用正弦定理,求得的值是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)根與系數(shù)之間的關(guān)系求出a5+a10,利用等差數(shù)列的前n項和公式及性質(zhì)進行求解即可.【詳解】∵,是方程的兩個根,可得,∴.故選D.【點睛】本題主要考查等差數(shù)列的前n項和公式的應(yīng)用,考查了等差數(shù)列的性質(zhì)的運用,根據(jù)根與系數(shù)之間的關(guān)系建立方程關(guān)系是解決本題的關(guān)鍵.6、A【解析】
畫出圖形,由已知條件便知P點在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動點P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動點P的軌跡所覆蓋圖形的面積為.故答案為:A.【點睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點所覆蓋的區(qū)域.7、D【解析】
寫出所有等可能事件,求出事件“至少有一個黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對立.【詳解】記兩個黑球為,兩個紅球為,則任取兩球的所有等可能結(jié)果為:,記事件A為“至少有一個黑球”,事件為:“都是紅球”,則,因為,所以事件與事件互為對立事件.【點睛】本題考查古典概型和對立事件的判斷,利用兩事件的概率和為1是判斷對立事件的常用方法.8、D【解析】由數(shù)列是公比為的等比數(shù)列,且滿足,得,所以,所以,設(shè)數(shù)列的公差為,則,故選D.9、C【解析】
直接利用余弦定理得到答案.【詳解】故答案選C【點睛】本題考查了余弦定理,意在考查學(xué)生計算能力.10、C【解析】
利用幾何概型的計算概率的方法解決本題,關(guān)鍵要弄準(zhǔn)所求的隨機事件發(fā)生的區(qū)域的面積和事件總體的區(qū)域面積,通過相除的方法完成本題的解答.【詳解】解:由幾何概型的計算方法,可以得出所求事件的概率為P=.故選C.【點評】本題考查概率的計算,考查幾何概型的辨別,考查學(xué)生通過比例的方法計算概率的問題,考查學(xué)生分析問題解決問題的能力,考查學(xué)生幾何圖形面積的計算方法,屬于基本題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設(shè)圓的方程為,圓經(jīng)過三點(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式.12、【解析】
根據(jù)約束條件,畫出可行域,將目標(biāo)函數(shù)化為斜截式,找到其在軸截距的最大值,得到答案.【詳解】由約束條件,畫出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,直線在軸上的截距最大,聯(lián)立,解得,即,所以.故答案為:.【點睛】本題考查線性規(guī)劃求最大值,屬于簡單題.13、【解析】
作出圖形,作點關(guān)于軸的對稱點,由對稱性可知,結(jié)合圖形可知,當(dāng)、、三點共線時,取最小值,并求出直線的方程,與軸方程聯(lián)立,即可求出點的坐標(biāo).【詳解】如下圖所示,作點關(guān)于軸的對稱點,由對稱性可知,則,當(dāng)且僅當(dāng)、、三點共線時,的值最小,直線的斜率為,直線的方程為,即,聯(lián)立,解得,因此,點的坐標(biāo)為.故答案為:.【點睛】本題考查利用折線段長的最小值求點的坐標(biāo),涉及兩點關(guān)于直線對稱性的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.14、0【解析】
將單位圓分成長度相等的四段弧,每段弧對應(yīng)的圓周角為,計算得到答案.【詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應(yīng)的圓周角為或故答案為0【點睛】本題考查了直線和圓相交問題,判斷每段弧對應(yīng)的圓周角為是解題的關(guān)鍵.15、【解析】試題分析:根據(jù)題意,由于等比數(shù)列中,,,則可知公比為,那么可知等比數(shù)列中,,,故可知,那么可知數(shù)列的前項和=1=,故可知答案為.考點:等比數(shù)列點評:主要是考查了等比數(shù)列的通項公式以及數(shù)列的求和的運用,屬于基礎(chǔ)題.16、15【解析】
根據(jù)球的半徑,先求得球的體積;根據(jù)圓與等邊三角形關(guān)系,設(shè)出的邊長為,由面積關(guān)系表示出圓錐的體積;設(shè)拿出鐵球后水面高度為,用表示出水的體積,由即可求得液面高度.【詳解】因為鐵球半徑為,所以由球的體積公式可得,設(shè)的邊長為,則由面積公式與內(nèi)切圓關(guān)系可得,解得,則圓錐的高為.則圓錐的體積為,設(shè)拿出鐵球后的水面為,且到的距離為,如下圖所示:則由,可得,所以拿出鐵球后水的體積為,由,可知,解得,即將鐵球取出后容器中水的深度為15.故答案為:15.【點睛】本題考查了圓錐內(nèi)切球性質(zhì)的應(yīng)用,球的體積公式及圓錐體積公式的求法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2),,或,;(3).【解析】
(1)由三角函數(shù)的恒等變換公式和正弦函數(shù)的周期的公式,即可求解;(2)由正弦函數(shù)的圖象與性質(zhì),討論的范圍,得到的方程組,即可求得的值;(3)對討論奇數(shù)和偶數(shù),由參數(shù)分離和函數(shù)的最值,即可求得的范圍.【詳解】(1)由題意,函數(shù)所以函數(shù)的最小正周期為.(2)由(1)知,當(dāng)時,則,所以,即,令,則,函數(shù),即,,當(dāng)時,在為單調(diào)遞增函數(shù),可得且,即,解得;當(dāng)時,在為單調(diào)遞減函數(shù),可得且,即,解得;綜上可得,或,;(3)由(2)可知,當(dāng)時,,當(dāng)為奇數(shù)時,,即為,即恒成立,又由,即;當(dāng)為偶數(shù)時,,即為,即恒成立,又由,即;綜上可得,實數(shù)滿足,即實數(shù)取值范圍.【點睛】本題主要考查了三角恒等變換,以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解中熟練化簡函數(shù)的解析式,合理應(yīng)用三角函數(shù)的圖象與性質(zhì),以及利用分類討論和分離參數(shù)求解是解答的關(guān)鍵,著重考查了分類討論思想,分離參數(shù),以及推理與運算能力,屬于中檔試題.18、(1);(2)-2【解析】
(1)根據(jù)向量的坐標(biāo)的運算法則和向量垂直的條件,以及模的定義即可求出;(2)根據(jù)向量共線的條件即可求出.【詳解】(1)∵,∴,,∴m=﹣1∴∴=(2)由已知:,,因為,所以:k﹣2=4(2k+3),∴k=﹣2【點睛】本題考查了向量的坐標(biāo)運算以及向量的垂直和平行,屬于基礎(chǔ)題.19、(1)3所、2所;(2)①共10種;②【解析】
(1)根據(jù)分層抽樣的方法,得到分層抽樣的比例,即可求解樣本中小學(xué)與中學(xué)抽取的學(xué)校數(shù)目;(2)①3所小學(xué)分別記為;2所中學(xué)分別記為,利用列舉法,即可求得抽取的2所學(xué)校的所有結(jié)果;②利用古典概型的概率計算公式,即可求得相應(yīng)的概率.【詳解】(1)學(xué)??倲?shù)為35所,所以分層抽樣的比例為,計算各類學(xué)校應(yīng)抽取的數(shù)目為:,故從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目為3所、2所.(2)①3所小學(xué)分別記為;2所中學(xué)分別記為應(yīng)抽取的2所學(xué)校的所有結(jié)果為:共10種.②設(shè)“抽取的2所學(xué)校至少有一所中學(xué)”作為事件.其結(jié)果共有7種,所以概率為.【點睛】本題主要考查了分層抽樣的應(yīng)用,以及古典概型及其概率的計算,其中解答中認真審題,合理利用列舉法求得基本事件的總數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)先設(shè)在B組中看不清的那個同學(xué)的分數(shù)為x,分別求得兩組的平均數(shù),再由平均數(shù)間的關(guān)系求解.(2)先求出從A組這5名學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《藝術(shù)展覽策劃》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《人體造型訓(xùn)練》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《合唱Ⅴ》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《版面與圖式》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林師范大學(xué)《羽毛球教學(xué)與訓(xùn)練》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年大小水庫轉(zhuǎn)讓協(xié)議書模板范本
- 2022年公務(wù)員多省聯(lián)考《申論》真題(四川省市卷)及答案解析
- 2022年云南省公務(wù)員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 2022年河南省公務(wù)員錄用考試《行測》真題及答案解析
- 《供應(yīng)鏈管理》課件 第3章 供應(yīng)鏈網(wǎng)絡(luò)構(gòu)建
- 《電話的發(fā)展史》課件
- 生產(chǎn)運營效率優(yōu)化年度總結(jié)與規(guī)劃
- 水文監(jiān)測技術(shù)演示
- 大學(xué)傳染病的預(yù)防課件
- 2021年江蘇省普通高中學(xué)業(yè)水平合格性考試化學(xué)試卷(含答案)新
- 老舊小區(qū)改造室內(nèi)給排水工程施工方案和技術(shù)措施
- 智能化農(nóng)業(yè)裝備
- 中考物理復(fù)習(xí)-等效電路“節(jié)點分析”解析
- 實現(xiàn)人生價值(教學(xué)課件)-【中職專用】德育課程《哲學(xué)與人生》
- 天津市河?xùn)|區(qū)2023-2024九年級上學(xué)期期中數(shù)學(xué)試題
- 人力資源外包服務(wù)勞務(wù)外包勞務(wù)派遣投標(biāo)方案
評論
0/150
提交評論