2024屆河南省鄭州市第一〇六中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2024屆河南省鄭州市第一〇六中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2024屆河南省鄭州市第一〇六中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2024屆河南省鄭州市第一〇六中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2024屆河南省鄭州市第一〇六中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河南省鄭州市第一〇六中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知不等式的解集為,則不等式的解集為()A. B.C. D.2.已知等差數(shù)列an的前n項(xiàng)和為18,若S3=1,aA.9 B.21 C.27 D.363.同時(shí)拋擲兩個(gè)骰子,則向上的點(diǎn)數(shù)之和是的概率是()A. B. C. D.4.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”.已知數(shù)列為調(diào)和數(shù)列,且,則的最大值是()A.50 B.100 C.150 D.2005.在直角坐標(biāo)平面上,點(diǎn)的坐標(biāo)滿足方程,點(diǎn)的坐標(biāo)滿足方程則的取值范圍是()A. B. C. D.6.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能7.已知圓截直線所得弦的長度為4,則實(shí)數(shù)a的值是A. B. C. D.8.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯(cuò)誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費(fèi),選到的居民用電量在[30,40)一組的概率為19.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.610.已知中,,,,則BC邊上的中線AM的長度為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,且a1+b1=5,12.長時(shí)間的低頭,對人的身體如頸椎、眼睛等會(huì)造成定的損害,為了了解某群體中“低頭族”的比例,現(xiàn)從該群體包含老、中、青三個(gè)年齡段的人中采用分層抽樣的方法抽取人進(jìn)行調(diào)查,已知這人里老、中、青三個(gè)年齡段的分配比例如圖所示,則這個(gè)群體里青年人人數(shù)為_____13.函數(shù)的定義域?yàn)開________.14.已知數(shù)列,,且,則________.15.已知等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項(xiàng)和=________.16.已知角的終邊經(jīng)過點(diǎn),若,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.中,角的對邊分別為,且.(I)求的值;(II)求的值.18.已知為坐標(biāo)原點(diǎn),,,若.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)當(dāng)時(shí),若方程有根,求的取值范圍.19.已知為平面內(nèi)不共線的三點(diǎn),表示的面積(1)若求;(2)若,,,證明:;(3)若,,,其中,且坐標(biāo)原點(diǎn)恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.20.已知的頂點(diǎn),邊上的高所在的直線方程為,為的中點(diǎn),且所在的直線方程為.(1)求頂點(diǎn)的坐標(biāo);(2)求過點(diǎn)且在軸、軸上的截距相等的直線的方程.21.設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.(1)求點(diǎn)的坐標(biāo);(2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;(3)若把方程的正實(shí)根從小到大依次排列為,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

首先根據(jù)題意得到,為方程的根,再解出的值帶入不等式即可.【詳解】有題知:,為方程的根.所以,解得.所以,解得:或.故選:B【點(diǎn)睛】本題主要考查二次不等式的求法,同時(shí)考查了學(xué)生的計(jì)算能力,屬于簡單題.2、C【解析】

利用前n項(xiàng)和Sn的性質(zhì)可求n【詳解】因?yàn)镾3而a1所以6Snn【點(diǎn)睛】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn3、C【解析】

由題意可知,基本事件總數(shù)為,然后列舉出事件“同時(shí)拋擲兩個(gè)骰子,向上的點(diǎn)數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計(jì)算出所求事件的概率.【詳解】同時(shí)拋擲兩個(gè)骰子,共有個(gè)基本事件,事件“同時(shí)拋擲兩個(gè)骰子,向上的點(diǎn)數(shù)之和是”所包含的基本事件有:、、、、,共個(gè)基本事件.因此,所求事件的概率為.故選:C.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)調(diào)和數(shù)列定義知為等差數(shù)列,再由前20項(xiàng)的和為200知,最后根據(jù)基本不等式可求出的最大值?!驹斀狻恳?yàn)閿?shù)列為調(diào)和數(shù)列,所以,即為等差數(shù)列又,又大于0所以【點(diǎn)睛】本題考查了新定義“調(diào)和數(shù)列”的性質(zhì)、等差數(shù)列的性質(zhì)及其前n項(xiàng)公式、基本不等式的性質(zhì),屬于難題。5、B【解析】

由點(diǎn)的坐標(biāo)滿足方程,可得在圓上,由坐標(biāo)滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點(diǎn)的坐標(biāo)滿足方程,在圓上,在坐標(biāo)滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【點(diǎn)睛】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應(yīng)用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時(shí)發(fā)揮著奇特功效,大大提高了解題能力與速度.運(yùn)用這種方法的關(guān)鍵是運(yùn)用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.6、A【解析】

由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點(diǎn)睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.7、B【解析】試題分析:圓化為標(biāo)準(zhǔn)方程為,所以圓心為(-1,1),半徑,弦心距為.因?yàn)閳A截直線所得弦長為4,所以.故選B.8、C【解析】

根據(jù)頻率分布直方圖逐一計(jì)算分析.【詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯(cuò)誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【點(diǎn)睛】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率9、D【解析】

根據(jù)公式把模轉(zhuǎn)化為數(shù)量積,展開后再根據(jù)和已知條件計(jì)算.【詳解】因?yàn)樵诜较蛏系耐队盀?,所以?故選D.【點(diǎn)睛】本題主要考查向量模有關(guān)的計(jì)算,常用公式有,.10、A【解析】

利用平行四邊形對角線的平方和等于四條邊的平方和,求的長.【詳解】延長至,使,連接、,如圖所示;由題意知四邊形是平行四邊形,且滿足,即,解得,所以邊上的中線的長度為.故選:A.【點(diǎn)睛】本題考查平行四邊形對角線的平方和等于四條邊的平方和應(yīng)用問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

根據(jù)等差數(shù)列的通項(xiàng)公式把a(bǔ)bn轉(zhuǎn)化到a1+(bn-1)【詳解】S=[=[=na1=4n+n(n-1)故答案為:12【點(diǎn)睛】本題主要考查等差數(shù)列通項(xiàng)公式和前n項(xiàng)和的應(yīng)用,利用分組求和法是解決本題的關(guān)鍵.12、【解析】

根據(jù)餅狀圖得到青年人的分配比例;利用總數(shù)乘以比例即可得到青年人的人數(shù).【詳解】由餅狀圖可知青年人的分配比例為:這個(gè)群體里青年人的人數(shù)為:人本題正確結(jié)果:【點(diǎn)睛】本題考查分層抽樣知識(shí)的應(yīng)用,屬于基礎(chǔ)題.13、【解析】

根據(jù)對數(shù)函數(shù)的真數(shù)大于0,列出不等式求解集即可.【詳解】對數(shù)函數(shù)f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定義域?yàn)椋?,+∞).故答案為:(1,+∞).【點(diǎn)睛】本題考查了求對數(shù)函數(shù)的定義域問題,是基礎(chǔ)題.14、【解析】

由題意可得{}是以+1為首項(xiàng),以2為公比的等比數(shù)列,再由已知求得首項(xiàng),進(jìn)一步求得即可.【詳解】在數(shù)列中,滿足得,則數(shù)列是以+1為首項(xiàng),以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,利用構(gòu)造等比數(shù)列方法求數(shù)列的通項(xiàng)公式,屬于中檔題.15、【解析】試題分析:根據(jù)題意,由于等比數(shù)列中,,,則可知公比為,那么可知等比數(shù)列中,,,故可知,那么可知數(shù)列的前項(xiàng)和=1=,故可知答案為.考點(diǎn):等比數(shù)列點(diǎn)評:主要是考查了等比數(shù)列的通項(xiàng)公式以及數(shù)列的求和的運(yùn)用,屬于基礎(chǔ)題.16、【解析】

利用三角函數(shù)的定義可求.【詳解】由三角函數(shù)的定義可得,故.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的定義,注意根據(jù)正弦的定義構(gòu)建關(guān)于的方程,本題屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)5【解析】試題分析:(1)依題意,利用正弦定理及二倍角的正弦即可求得cosA的值;(2)易求sinA=,sinB=,從而利用兩角和的正弦可求得sin(A+B)=,在△ABC中,此即sinC的值,利用正弦定理可求得c的值.試題解析:(1)由正弦定理可得,即:,∴,∴.(2由(1),且,∴,∴,∴==.由正弦定理可得:,∴.18、(1)的單調(diào)減區(qū)間為;(2).【解析】試題分析:(1)根據(jù)向量點(diǎn)積的坐標(biāo)運(yùn)算得到,根據(jù)正弦函數(shù)的單調(diào)性得到單調(diào)遞減區(qū)間;(2)將式子變形為.有解,轉(zhuǎn)化為值域問題.解析:(Ⅰ)∵,,∴其單調(diào)遞減區(qū)間滿足,,所以的單調(diào)減區(qū)間為.(Ⅱ)∵當(dāng)時(shí),方程有根,∴.∵,∴,∴,∴,∴.點(diǎn)睛:這個(gè)題目考查了,向量點(diǎn)積運(yùn)算,三角函數(shù)的化一公式,,正弦函數(shù)的單調(diào)性問題,三角函數(shù)的值域和圖像問題.第二問還要用到了方程的零點(diǎn)的問題.一般函數(shù)的零點(diǎn)和方程的根,圖象的交點(diǎn)是同一個(gè)問題,可以互相轉(zhuǎn)化.19、(1);(2)詳見解析;(3)是定值,值為,理由見解析.【解析】

(1)已知三點(diǎn)坐標(biāo),則可以求出三邊長度及對應(yīng)向量,由向量數(shù)量積公式可以求出夾角余弦值,從而算出正弦值,利用面積公式完成作答;(2)和(1)的方法一樣,唯獨(dú)不同在于(1)是具體值,而(2)中是參數(shù),我們可以把參數(shù)當(dāng)做整體(視為已知)能處理;(3)由恰好為的正心可以獲取,而可以借助(2)的公式直接運(yùn)用,本題也就完成作答.【詳解】(1)因?yàn)椋?,,所以因?yàn)?,所以,所以?)因?yàn)?,所以所以因?yàn)樗运运裕唬?)因?yàn)闉榈闹匦?,所以?1)可知又因?yàn)闉榈闹匦模?,平方相加?,即,所以所以,所以是定值,值為【點(diǎn)睛】已知三角形三點(diǎn),去探究三角形面積問題,通過向量數(shù)量積為載體,算出相對應(yīng)邊所在向量的模長、夾角余弦值,進(jìn)一步算出正弦值,從而算出面積,這三問存在層層遞進(jìn)的過程,從特殊到一般慢慢設(shè)問,非常好的一個(gè)探究性習(xí)題.20、(1)(2)或【解析】

(1)首先確定直線的斜率,從而得到直線的方程;因?yàn)辄c(diǎn)是直線與的交點(diǎn),聯(lián)立兩條直線可求得點(diǎn)坐標(biāo);(2)設(shè),利用中點(diǎn)坐標(biāo)公式表示出;根據(jù)在直線上,在直線上,可構(gòu)造方程組,求得點(diǎn)坐標(biāo);根據(jù)截距相等,可分為截距為和不為兩種情況來分別求解出直線方程.【詳解】(1)由已知得:直線的方程為:,即:由,解得:的坐標(biāo)為(2)設(shè),則則,解得:直線在軸、軸上的截距相等當(dāng)直線經(jīng)過原點(diǎn)時(shí),設(shè)直線的方程為把點(diǎn)代入,得:,解得:此時(shí)直線的方程為:當(dāng)直線不經(jīng)過原點(diǎn)時(shí),設(shè)直線的方程為把點(diǎn)代入,得:,解得:此時(shí)直線的方程為直線的方程為:或【點(diǎn)睛】本題考查直線交點(diǎn)、直線方程的求解問題,易錯(cuò)點(diǎn)是在已知截距相等的情況下,忽略截距為零的情況,造成丟根.21、(1)(2)單調(diào)遞增區(qū)間為;對稱軸方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論