上海市徐匯區(qū)上海中學2024屆數(shù)學高一下期末聯(lián)考模擬試題含解析_第1頁
上海市徐匯區(qū)上海中學2024屆數(shù)學高一下期末聯(lián)考模擬試題含解析_第2頁
上海市徐匯區(qū)上海中學2024屆數(shù)學高一下期末聯(lián)考模擬試題含解析_第3頁
上海市徐匯區(qū)上海中學2024屆數(shù)學高一下期末聯(lián)考模擬試題含解析_第4頁
上海市徐匯區(qū)上海中學2024屆數(shù)學高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市徐匯區(qū)上海中學2024屆數(shù)學高一下期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則A. B. C. D.2.從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是()A.至少有一個紅球與都是紅球B.至少有一個紅球與都是白球C.恰有一個紅球與恰有二個紅球D.至少有一個紅球與至少有一個白球3.已知如圖正方體中,為棱上異于其中點的動點,為棱的中點,設直線為平面與平面的交線,以下關系中正確的是()A. B.C.平面 D.平面4.過點且在兩坐標軸上截距相等的直線方程是()A. B.C.或 D.或5.若,則下列不等式成立的是A. B. C. D.6.已知函數(shù),則()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.218.數(shù)列中,若,則下列命題中真命題個數(shù)是()(1)若數(shù)列為常數(shù)數(shù)列,則;(2)若,數(shù)列都是單調(diào)遞增數(shù)列;(3)若,任取中的項構成數(shù)列的子數(shù)(),則都是單調(diào)數(shù)列.A.個 B.個 C.個 D.個9.甲、乙兩個不透明的袋中各有5個僅顏色不同的球,其中甲袋中有3個紅球,2個白球,乙袋中有2個紅球,3個白球,現(xiàn)從兩袋中各隨機取一球,則兩球不同顏色的概率為()A. B. C. D.10.如圖,水平放置的三棱柱的側棱長和底邊長均為4,且側棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.12.若在上是減函數(shù),則的取值范圍為______.13.一圓柱的側面展開圖是長、寬分別為3、4的矩形,則此圓柱的側面積是________.14.空間兩點,間的距離為_____.15.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________16.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.18.隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:年份

2010

2011

2012

2013

2014

時間代號

1

2

3

4

5

儲蓄存款(千億元)

5

6

7

8

10

(Ⅰ)求y關于t的回歸方程(Ⅱ)用所求回歸方程預測該地區(qū)2015年()的人民幣儲蓄存款.附:回歸方程中19.已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.(1)求k的取值范圍;(2)若=12,其中O為坐標原點,求|MN|.20.在中,角A,B,C的對邊分別為a,b,c,若,.(1)求角A的大?。唬?)若,求的周長.21.已知函數(shù).(1)求的最小正周期;(2)若,求當時自變量的取值集合.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

分析:由公式可得結果.詳解:故選B.點睛:本題主要考查二倍角公式,屬于基礎題.2、C【解析】

從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,不同的取球情況共有以下幾種:3個球全是紅球;2個紅球和1個白球;1個紅球2個白球;3個全是白球.選項A中,事件“都是紅球”是事件“至少有一個紅球”的子事件;選項B中,事件“至少有一個紅球”與事件“都是白球”是對立事件;選項D中,事件“至少有一個紅球”與事件“至少有一個白球”的事件為“2個紅球1個白球”與“1個紅球2個白球”;選項C中,事件“恰有一個紅球”與事件“恰有2個紅球”互斥不對立,故選C.3、C【解析】

根據(jù)正方體性質(zhì),以及線面平行、垂直的判定以及性質(zhì)定理即可判斷.【詳解】因為在正方體中,,且平面,平面,所以平面,因為平面,且平面平面,所以有,而,則與不平行,故選項不正確;若,則,顯然與不垂直,矛盾,故選項不正確;若平面,則平面,顯然與正方體的性質(zhì)矛盾,故不正確;而因為平面,平面,所以有平面,所以選項C正確,.【點睛】本題考查了線線、線面平行與垂直的關系判斷,屬于中檔題.4、C【解析】

設過點A(4,1)的直線方程為y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直線方程為x+y-5=0或x-4y=0.故選C.5、C【解析】

利用的單調(diào)性直接判斷即可。【詳解】因為在上遞增,又,所以成立。故選:C【點睛】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎題。6、A【解析】

由題意結合函數(shù)的解析式分別求得的值,然后求解兩者之差即可.【詳解】由題意可得:,,則.故選:A.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內(nèi)到外依次求值.7、C【解析】

通過程序一步步分析得到結果,從而得到輸出結果.【詳解】開始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【點睛】本題主要考查算法框圖的輸出結果,意在考查學生的分析能力及計算能力,難度不大.8、C【解析】

對(1),由數(shù)列為常數(shù)數(shù)列,則,解方程可得的值;對(2),由函數(shù),,求得導數(shù)和極值,可判斷單調(diào)性;對(3),由,判斷奇偶性和單調(diào)性,結合正弦函數(shù)的單調(diào)性,即可得到結論.【詳解】數(shù)列中,若,,,(1)若數(shù)列為常數(shù)數(shù)列,則,解得或,故(1)不正確;(2)若,,,由函數(shù),,,由,可得極值點唯一且為,極值為,由,可得,則,即有.由于,,由正弦函數(shù)的單調(diào)性,可得,則數(shù)列都是單調(diào)遞增數(shù)列,故(2)正確;(3)若,任取中的9項,,,,,構成數(shù)列的子數(shù)列,,2,,9,是單調(diào)遞增數(shù)列;由,可得,為奇函數(shù);當時,,時,;當時,;時,,運用正弦函數(shù)的單調(diào)性可得或時,數(shù)列單調(diào)遞增;或時,數(shù)列單調(diào)遞減.所以數(shù)列都是單調(diào)數(shù)列,故(3)正確;故選:C.【點睛】本題考查數(shù)列的單調(diào)性的判斷和運用,考查正弦函數(shù)的單調(diào)性,以及分類討論思想方法,屬于難題.9、D【解析】

現(xiàn)從兩袋中各隨機取一球,基本事件總數(shù),兩球不同顏色包含的基本事件個數(shù),由此能求出兩球不同顏色的概率.【詳解】甲、乙兩個不透明的袋中各有5個僅顏色不同的球,其中甲袋中有3個紅球、2個白球,乙袋中有2個紅球、3個白球,現(xiàn)從兩袋中各隨機取一球,基本事件總數(shù),兩球不同顏色包含的基本事件個數(shù),則兩球不同顏色的概率為.故選.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于中檔題.10、A【解析】

根據(jù)題意,得出該幾何體左視圖的高和寬的長度,求出它的面積,即可求解.【詳解】根據(jù)題意,該幾何體左視圖的高是正視圖的高,所以左視圖的高為,又由左視圖的寬是俯視圖三角形的底邊上的高,所以左視圖的寬為,所以該幾何體的左視圖的面積為,故選A.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎題.12、【解析】

化簡函數(shù)解析式,,時,是余弦函數(shù)單調(diào)減區(qū)間的子集,即可求解.【詳解】,時,,且在上是減函數(shù),,,因為解得.【點睛】本題主要考查了函數(shù)的三角恒等變化,余弦函數(shù)的單調(diào)性,屬于中檔題.13、12【解析】

直接根據(jù)圓柱的側面展開圖的面積和圓柱側面積的關系計算得解.【詳解】因為圓柱的側面展開圖的面積和圓柱側面積相等,所以此圓柱的側面積為.故答案為:12【點睛】本題主要考查圓柱的側面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.14、【解析】

根據(jù)空間中兩點間的距離公式即可得到答案【詳解】由空間中兩點間的距離公式可得;;故距離為3【點睛】本題考查空間中兩點間的距離公式,屬于基礎題。15、【解析】

由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運算求解能力,求解時要注意等差數(shù)列性質(zhì)的合理運用.16、【解析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構成數(shù)列,不妨令,則,且,則此時必為整數(shù);當時,,不符合;當時,,符合,此時公比;當時,,不符合;當時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準確分析.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結果試題解析:(1)證明:連結AC1交A1C于點F,則F為AC1中點又D是AB中點,連結DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積18、(Ⅰ),(Ⅱ)千億元.【解析】試題分析:(Ⅰ)列表分別計算出,的值,然后代入求得,再代入求出值,從而就可得到回歸方程,(Ⅱ)將代入回歸方程可預測該地區(qū)2015年的人民幣儲蓄存款.試題解析:(1)列表計算如下i

1

1

5

1

5

2

2

6

4

12

3

3

7

9

21

4

4

8

16

32

5

5

10

25

50

15

36

55

120

這里又從而.故所求回歸方程為.(2)將代入回歸方程可預測該地區(qū)2015年的人民幣儲蓄存款為考點:線性回歸方程.19、(3);(3)3.【解析】試題分析:(3)由題意可得,直線l的斜率存在,用點斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿足條件的k的范圍.(3)由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+3,根據(jù)直線和圓相交的弦長公式進行求解試題解析:(3)由題意可得,直線l的斜率存在,設過點A(2,3)的直線方程:y=kx+3,即:kx-y+3=2.由已知可得圓C的圓心C的坐標(3,3),半徑R=3.故由,解得:.故當,過點A(2,3)的直線與圓C:相交于M,N兩點.(3)設M;N,由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+3,代入圓C的方程,可得,∴,∴,由,解得k=3,故直線l的方程為y=x+3,即x-y+3=2.圓心C在直線l上,MN長即為圓的直徑.所以|MN|=3考點:直線與圓的位置關系;平面向量數(shù)量積的運算20、(1);(2)【解析】

(1)根據(jù)三角形面積公式,結合平面向量數(shù)量積定義,分別表示出,聯(lián)立即可求得,進而得的值.(2)由,結合余弦定理即可表示出,由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論