2024屆江西師范大學(xué)附中高一下數(shù)學(xué)期末考試模擬試題含解析_第1頁
2024屆江西師范大學(xué)附中高一下數(shù)學(xué)期末考試模擬試題含解析_第2頁
2024屆江西師范大學(xué)附中高一下數(shù)學(xué)期末考試模擬試題含解析_第3頁
2024屆江西師范大學(xué)附中高一下數(shù)學(xué)期末考試模擬試題含解析_第4頁
2024屆江西師范大學(xué)附中高一下數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江西師范大學(xué)附中高一下數(shù)學(xué)期末考試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在正四棱柱中,,則點到平面的距離是()A. B. C. D.2.若將一個質(zhì)點隨機投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質(zhì)點落在以AB為直徑的半圓內(nèi)的概率是()A. B. C. D.3.已知某幾何體的三視圖是如圖所示的三個直角三角形,則該幾何體的外接球的表面積為()A.17π B.34π C.51π D.68π4.一個長方體長、寬分別為5,4,且該長方體的外接球的表面積為,則該長方體的表面積為()A.47 B.60 C.94 D.1985.已知=4,=3,,則與的夾角為()A. B. C. D.6.下列說法正確的是()A.銳角是第一象限的角,所以第一象限的角都是銳角;B.如果向量,則;C.在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;D.若,都是單位向量,則.7.已知是等差數(shù)列,,其前10項和,則其公差A(yù). B. C. D.8.在中,內(nèi)角所對的邊分別為,且,則()A. B. C. D.9.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc210.已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是()A.(0,1) B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列,其中,若數(shù)列中,恒成立,則實數(shù)的取值范圍是_______.12.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則________.13.已知正三棱柱木塊,其中,,一只螞蟻自點出發(fā)經(jīng)過線段上的一點到達(dá)點,當(dāng)沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為______.14.在中,,,,則的面積是__________.15.將邊長為1的正方形中,把沿對角線AC折起到,使平面⊥平面ABC,則三棱錐的體積為________.16.若,,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,求的值.18.已知夾角為,且,,求:(1);(2)與的夾角.19.設(shè)向量,,其中.(1)若,求的值;(2)若,求的值.20.已知函數(shù),.(1)求函數(shù)的單調(diào)減區(qū)間;(2)若存在,使等式成立,求實數(shù)的取值范圍.21.正項數(shù)列的前項和為,且.(Ⅰ)試求數(shù)列的通項公式;(Ⅱ)設(shè),求的前項和為.(Ⅲ)在(Ⅱ)的條件下,若對一切恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

計算的面積,根據(jù)可得點到平面的距離.【詳解】中,,,∴的邊上的高為,∴,設(shè)到平面的距離為,則,又,∴,解得.故選A.【點睛】本題涉及點面距離的求法,點面距可以通過建立空間直角坐標(biāo)系來求得點面距離,或者尋找面面垂直,再直接過點做交線的垂線即可;當(dāng)點面距離不好求時,也可以根據(jù)等積法把點到平面的距離歸結(jié)為一個容易求得的幾何體的體積.2、B【解析】試題分析:本題是幾何概型問題,矩形面積2,半圓面積,所以質(zhì)點落在以AB為直徑的半圓內(nèi)的概率是,故選B.考點:幾何概型.3、B【解析】

由三視圖還原出原幾何體,得幾何體的結(jié)構(gòu)(特別是垂直關(guān)系),從而確定其外接球球心位置,得球半徑.【詳解】由三視圖知原幾何體是三棱錐,如圖,平面,平面.由這兩個線面垂直,得,因此的中點到四頂點的距離相等,即為外接球球心.由三視圖得,,∴.故選:B.【點睛】本題考查三棱錐外接球表面積,考查三視圖.解題關(guān)鍵是由三視圖還原出原幾何體,確定幾何體的結(jié)構(gòu),找到外接球球心.4、C【解析】

根據(jù)球的表面積公式求得半徑,利用等于體對角線長度的一半可構(gòu)造方程求出長方體的高,進(jìn)而根據(jù)長方體表面積公式可求得結(jié)果.【詳解】設(shè)長方體高為,外接球半徑為,則,解得:長方體外接球半徑為其體對角線長度的一半解得:長方體表面積本題正確選項:【點睛】本題考查與外接球有關(guān)的長方體的表面積的求解問題,關(guān)鍵是能夠明確長方體的外接球半徑為其體對角線長度的一半,從而構(gòu)造方程求出所需的棱長.5、C【解析】

由已知中,,,我們可以求出的值,進(jìn)而根據(jù)數(shù)量積的夾角公式,求出,,進(jìn)而得到向量與的夾角;【詳解】,,,,,所以向量與的夾角為.故選C【點睛】本題主要考查平面向量的數(shù)量積運算和向量的夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】

可舉的角在第一象限,但不是銳角,可判斷A;考慮兩向量是否為零向量,可判斷B;由不共線,推得與不共線,可判斷C;考慮兩向量的方向可判斷D,得到答案.【詳解】對于A,銳角是第一象限的角,但第一象限的角不一定為銳角,比如的角在第一象限,但不是銳角,故A錯誤;對于B,如果兩個非零向量滿足,則,若存在零向量,結(jié)論不一定成立,故B錯誤;對于C,在中,記,可得與不共線,則向量與可以作為平面內(nèi)的一組基底,故C正確;對于D,若都是單位向量,且方向相同時,;若方向不相同,結(jié)論不成立,所以D錯誤.故選C.【點睛】本題主要考查了命題的真假判斷,主要是向量共線和垂直的條件,著重考查了判斷能力和分析能力,屬于基礎(chǔ)題.7、D【解析】,解得,則,故選D.8、C【解析】

根據(jù)題目條件結(jié)合三角形的正弦定理以及三角形內(nèi)角和定理可得sinA,進(jìn)而利用二倍角余弦公式得到結(jié)果.【詳解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故選C【點睛】本題考查了正弦定理及二倍角余弦公式的靈活運用,考查計算能力,屬于基礎(chǔ)題.9、C【解析】

利用特殊值對錯誤選項進(jìn)行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.10、B【解析】

先求得直線y=ax+b(a>0)與x軸的交點為M(,0),由0可得點M在射線OA上.求出直線和BC的交點N的坐標(biāo),①若點M和點A重合,求得b;②若點M在點O和點A之間,求得b;③若點M在點A的左側(cè),求得b>1.再把以上得到的三個b的范圍取并集,可得結(jié)果.【詳解】由題意可得,三角形ABC的面積為1,由于直線y=ax+b(a>0)與x軸的交點為M(,0),由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,故0,故點M在射線OA上.設(shè)直線y=ax+b和BC的交點為N,則由可得點N的坐標(biāo)為(,).①若點M和點A重合,如圖:則點N為線段BC的中點,故N(,),把A、N兩點的坐標(biāo)代入直線y=ax+b,求得a=b.②若點M在點O和點A之間,如圖:此時b,點N在點B和點C之間,由題意可得三角形NMB的面積等于,即,即,可得a0,求得b,故有b.③若點M在點A的左側(cè),則b,由點M的橫坐標(biāo)1,求得b>a.設(shè)直線y=ax+b和AC的交點為P,則由求得點P的坐標(biāo)為(,),此時,由題意可得,三角形CPN的面積等于,即?(1﹣b)?|xN﹣xP|,即(1﹣b)?||,化簡可得2(1﹣b)2=|a2﹣1|.由于此時b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.兩邊開方可得(1﹣b)1,∴1﹣b,化簡可得b>1,故有1b.綜上可得b的取值范圍應(yīng)是,故選B.【點睛】本題主要考查確定直線的要素,點到直線的距離公式以及三角形的面積公式的應(yīng)用,還考查了運算能力以及綜合分析能力,分類討論思想,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由函數(shù)(數(shù)列)單調(diào)性確定的項,哪些項取,哪些項取,再由是最小項,得不等關(guān)系.【詳解】由題意數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,存在,使得時,,當(dāng)時,,∵數(shù)列中,是唯一的最小項,∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點睛】本題考查數(shù)列的單調(diào)性與最值.解題時楞借助函數(shù)的單調(diào)性求解.但數(shù)列是特殊的函數(shù),它的自變量只能取正整數(shù),因此討論時與連續(xù)函數(shù)有一些區(qū)別.12、【解析】

根據(jù)奇偶性,先計算,再計算【詳解】因為是定義在上的奇函數(shù),所以.因為當(dāng)時,所以.故答案為【點睛】本題考查了奇函數(shù)的性質(zhì),屬于??碱}型.13、【解析】

將正三棱柱的側(cè)面沿棱展開成平面,連接與的交點即為滿足最小時的點,可知點為棱的中點,即可計算出沿著螞蟻走過的路徑截開木塊時兩幾何體的體積之比.【詳解】將正三棱柱沿棱展開成平面,連接與的交點即為滿足最小時的點.由于,,再結(jié)合棱柱的性質(zhì),可得,一只螞蟻自點出發(fā)經(jīng)過線段上的一點到達(dá)點,當(dāng)沿螞蟻走過的最短路徑,為的中點,因為三棱柱是正三棱柱,所以當(dāng)沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為:.故答案為:.【點睛】本題考查棱柱側(cè)面最短路徑問題,涉及棱柱側(cè)面展開圖的應(yīng)用以及幾何體體積的計算,考查分析問題解決問題能力,是中檔題.14、【解析】

計算,等腰三角形計算面積,作底邊上的高,計算得到答案.【詳解】,過C作于D,則故答案為【點睛】本題考查了三角形面積計算,屬于簡單題.15、【解析】

由面面垂直的性質(zhì)定理可得面,再結(jié)合三棱錐的體積的求法求解即可.【詳解】解:取中點,連接,因為四邊形為邊長為1的正方形,則,即,又平面⊥平面ABC,由面面垂直的性質(zhì)定理可得:面,且,則,故答案為:.【點睛】本題考查了三棱錐的體積的求法,重點考查了面面垂直的性質(zhì)定理,屬中檔題.16、【解析】

將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點睛】本題考查利用兩角和的正弦公式求值,解題的關(guān)鍵就是將等式進(jìn)行平方,結(jié)合等式結(jié)構(gòu)進(jìn)行變形計算,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

由即,解得:(因為舍去)或.18、(1)(2)【解析】試題分析:(1)先求模的平方將問題轉(zhuǎn)化為向量的數(shù)量積問題.(2)根據(jù)數(shù)量積公式即可求得兩向量的夾角.(1),,所以.(2)設(shè)與的夾角為.則,因為,所以.考點:1向量的數(shù)量積;2向量的模長.19、(1);(2)【解析】

(1)由向量垂直的坐標(biāo)運算求出,再構(gòu)造齊次式求解即可;(2)先由向量的模的運算求得,再由求解即可.【詳解】解:(1)若,則,得,所以;(2)因為,,則,因為,所以,即,化簡得,即,所以,因為,所以,則,所以,,所以,故.【點睛】本題考查了三角函數(shù)構(gòu)造齊次式求值,重點考查了兩角差的正弦公式及二倍角公式,屬中檔題.20、(1),.(2)【解析】

(1)利用降次公式和輔助角公式化簡表達(dá)式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得函數(shù)的單調(diào)減區(qū)間.(2)首先求得當(dāng)時的值域.利用換元法令,將轉(zhuǎn)化為,根據(jù)的范圍,結(jié)合二次函數(shù)的性質(zhì),求得的取值范圍.【詳解】(1)由()解得().所以所求函數(shù)的單調(diào)減區(qū)間是,.(2)當(dāng)時,,,即.令(),則關(guān)于的方程在上有解,即關(guān)于的方程在上有解.當(dāng)時,.所以,則.因此所求實數(shù)的取值范圍是.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查根據(jù)方程的根存在求參數(shù)的取值范圍,考查二次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)將所給條件式子兩邊同時平方,利用遞推法可得的表達(dá)式,由兩式相減,變形即可證明數(shù)列為等差數(shù)列,進(jìn)而結(jié)合首項與公差求得的通項公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論