浙江省紹興縣楊汛橋鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
浙江省紹興縣楊汛橋鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
浙江省紹興縣楊汛橋鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
浙江省紹興縣楊汛橋鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
浙江省紹興縣楊汛橋鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省紹興縣楊汛橋鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進(jìn)入該公園游玩,則佳佳和琪琪恰好從同一個入口進(jìn)入該公園的概率是()A. B. C. D.2.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°3.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.4.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣15.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>26.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.7.關(guān)于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥48.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或139.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.10.計算(x-l)(x-2)的結(jié)果為()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+211.若分式的值為零,則x的值是()A.1 B. C. D.212.正方形ABCD在直角坐標(biāo)系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉(zhuǎn)180°后,C點的坐標(biāo)是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:cos245°-tan30°sin60°=______.14.已知關(guān)于x的一元二次方程kx2+3x﹣4k+6=0有兩個相等的實數(shù)根,則該實數(shù)根是_____.15.的倒數(shù)是_____________.16.方程的兩個根為、,則的值等于______.17.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.18.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知一個二次函數(shù)的圖象經(jīng)過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數(shù)解析式以及點C的坐標(biāo).20.(6分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.21.(6分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.22.(8分)如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)23.(8分)班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進(jìn)行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:(1)調(diào)查了________名學(xué)生;(2)補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;(4)學(xué)校將舉辦運動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.24.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當(dāng)x>0時,kx+b<m25.(10分)先化簡,再求值:(﹣2)÷,其中x滿足x2﹣x﹣4=026.(12分)閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:設(shè)(其中均為整數(shù)),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結(jié)論,找一組正整數(shù),填空:+=(+)2;(3)若,且均為正整數(shù),求的值.27.(12分)下面是一位同學(xué)的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結(jié),過點B作,交于點D.所以:線段________就是所求的線段x.①試將結(jié)論補完整②這位同學(xué)作圖的依據(jù)是________③如果,,,試用向量表示向量.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個入口進(jìn)入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個入口進(jìn)入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個入口進(jìn)入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.2、B【解析】

試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B3、B【解析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點睛】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用面積法解決有關(guān)線段問題,屬于中考常考題型.4、B【解析】

根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【點睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.5、A【解析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.6、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關(guān)于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點的應(yīng)用,關(guān)鍵是找出PD+PE最小時P點的位置.7、A【解析】∵關(guān)于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.8、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據(jù)三角形的三邊關(guān)系求解即可.解方程x2-6x+8=0得x=2或x=4當(dāng)x=2時,三邊長為2、3、6,而2+3<6,此時無法構(gòu)成三角形當(dāng)x=4時,三邊長為4、3、6,此時可以構(gòu)成三角形,周長=4+3+6=13故選C.考點:解一元二次方程,三角形的三邊關(guān)系點評:解題的關(guān)鍵是熟記三角形的三邊關(guān)系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.9、D【解析】

根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.10、B【解析】

根據(jù)多項式的乘法法則計算即可.【詳解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故選B.【點睛】本題考查了多項式與多項式的乘法運算,多項式與多項式相乘,先用一個多項式的每一項分別乘另一個多項式的每一項,再把所得的積相加.11、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.12、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后,C點的對應(yīng)點與C一定關(guān)于A對稱,A是對稱點連線的中點,據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后C的對應(yīng)點設(shè)是C′,則AC′=AC=2,則OC′=3,故C′的坐標(biāo)是(3,0).故選B.考點:坐標(biāo)與圖形變化-旋轉(zhuǎn).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0【解析】

直接利用特殊角的三角函數(shù)值代入進(jìn)而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.14、﹣1【解析】

根據(jù)二次項系數(shù)非零結(jié)合根的判別式△=0,即可得出關(guān)于k的一元一次不等式及一元二次方程,解之即可得出k值,將其代入原方程中解之即可得出原方程的解.【詳解】解:∵關(guān)于x的一元二次方程kx1+3x-4k+6=0有兩個相等的實數(shù)根,∴,解得:k=,∴原方程為x1+4x+4=0,即(x+1)1=0,解得:x=-1.故答案為:-1.【點睛】本題考查根的判別式、一元二次方程的定義以及配方法解一元二次方程,牢記“當(dāng)△=0時,方程有兩個相等的實數(shù)根”是解題的關(guān)鍵.15、【解析】先把帶分?jǐn)?shù)化成假分?jǐn)?shù)可得:,然后根據(jù)倒數(shù)的概念可得:的倒數(shù)是,故答案為:.16、1.【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系求解即可.【詳解】解:根據(jù)題意得,,所以===1.故答案為1.【點睛】本題考查了根與系數(shù)的關(guān)系:若、是一元二次方程(a≠0)的兩根時,,.17、3【解析】試題分析:根據(jù)點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點可得:EF為△ABC的中位線,根據(jù)中位線的性質(zhì)可得:EF=AB=3.考點:(1)、直角三角形的性質(zhì);(2)、中位線的性質(zhì)18、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據(jù)題意設(shè)出點A的坐標(biāo),然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進(jìn)而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設(shè)點A的坐標(biāo)為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、y=2x2+x﹣3,C點坐標(biāo)為(﹣,0)或(2,7)【解析】

設(shè)拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進(jìn)而求出點C的坐標(biāo)即可.【詳解】設(shè)拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標(biāo)為(﹣,0)或(2,7).【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時,要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.20、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】

(1)此題涉及乘方、特殊角的三角函數(shù)、負(fù)整數(shù)指數(shù)冪和二次根式的化簡,首先針對各知識點進(jìn)行計算,再計算實數(shù)的加減即可;(2)首先解出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點睛】此題主要考查了解一元一次不等式組,以實數(shù)的運算,關(guān)鍵是正確確定兩個不等式的解集,掌握特殊角的三角函數(shù)值.21、(1)見解析;(2)正方形的邊長為.【解析】

(1)由正方形的性質(zhì)得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結(jié)論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結(jié)果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識,熟練掌握正方形的性質(zhì),證明三角形全等與相似是解題的關(guān)鍵.22、2.7米【解析】解:作BF⊥DE于點F,BG⊥AE于點G在Rt△ADE中∵tan∠ADE=,∴DE="AE"·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:這塊宣傳牌CD的高度為2.7米.23、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.24、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標(biāo)為(【解析】

(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當(dāng)0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當(dāng)x>0時,kx+b<mx(3)如圖,作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設(shè)直線AB′的解析式為y=px+q,∴p+q=4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論