重慶市雙福育才中學2024年中考數(shù)學五模試卷含解析_第1頁
重慶市雙福育才中學2024年中考數(shù)學五模試卷含解析_第2頁
重慶市雙福育才中學2024年中考數(shù)學五模試卷含解析_第3頁
重慶市雙福育才中學2024年中考數(shù)學五模試卷含解析_第4頁
重慶市雙福育才中學2024年中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市雙福育才中學2024年中考數(shù)學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中,是軸對稱圖形的是()A. B. C. D.2.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m3.隨著我國綜合國力的提升,中華文化影響日益增強,學中文的外國人越來越多,中文已成為美國居民的第二外語,美國常講中文的人口約有210萬,請將“210萬”用科學記數(shù)法表示為()A. B. C. D.4.在剛剛結束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為25.某工廠計劃生產(chǎn)210個零件,由于采用新技術,實際每天生產(chǎn)零件的數(shù)量是原計劃的1.5倍,因此提前5天完成任務.設原計劃每天生產(chǎn)零件個,依題意列方程為()A. B.C. D.6.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是()A.有三個實數(shù)根 B.有兩個實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根7.關于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是38.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣29.如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關系的是()A. B.C. D.10.某學校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學校隨機抽取若干同學參加比賽,成績被制成不完整的統(tǒng)計表如下.成績?nèi)藬?shù)(頻數(shù))百分比(頻率)050.2105150.42050.1根據(jù)表中已有的信息,下列結論正確的是()A.共有40名同學參加知識競賽B.抽到的同學參加知識競賽的平均成績?yōu)?0分C.已知該校共有800名學生,若都參加競賽,得0分的估計有100人D.抽到同學參加知識競賽成績的中位數(shù)為15分二、填空題(本大題共6個小題,每小題3分,共18分)11.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.12.正十二邊形每個內(nèi)角的度數(shù)為.13.化簡:=.14.如圖,小紅將一個正方形紙片剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條,且剪下的兩個長條的面積相等.問這個正方形的邊長應為多少厘米?設正方形邊長為xcm,則可列方程為_____.15.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點A′,B,則的值為_________.16.如圖,已知平行四邊形ABCD,E是邊BC的中點,聯(lián)結DE并延長,與AB的延長線交于點F.設=,=,那么向量用向量、表示為_____.三、解答題(共8題,共72分)17.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數(shù)軸上表示出來.18.(8分)先化簡,再求值:,其中x=-1.19.(8分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.20.(8分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?21.(8分)計算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.22.(10分)如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.23.(12分)如圖,點A是反比例函數(shù)y1=4x與一次函數(shù)y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數(shù)求點A的坐標;若梯形ABOC的面積是3,求一次函數(shù)y2=kx+b的解析式;結合這兩個函數(shù)的完整圖象:當y1>24.觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關系是,位置關系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:根據(jù)軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.2、C【解析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.3、B【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】210萬=2100000,2100000=2.1×106,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、A【解析】

根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.5、A【解析】

設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,根據(jù)提前5天完成任務,列方程即可.【詳解】設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,由題意得,故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程即可.6、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.因為函數(shù)與函數(shù)的圖象只有一個交點所以方程只有一個實數(shù)根故選C.考點:函數(shù)的圖象點評:函數(shù)的圖象問題是初中數(shù)學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.7、D【解析】

根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應的關系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應的關系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關鍵.8、B【解析】分析:首先得到當點E旋轉至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉至y軸上時DE最??;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質,解題的關鍵是從圖形中整理出直角三角形.9、D【解析】

在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分當0<x≤3(點Q在AC上運動,點P在AB上運動)和當3≤x≤6時(點P與點B重合,點Q在CB上運動)兩種情況求出y與x的函數(shù)關系式,再結合圖象即可解答.【詳解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,當0<x≤3時,點Q在AC上運動,點P在AB上運動(如圖1),由題意可得AP=x,AQ=x,過點Q作QN⊥AB于點N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即當0<x≤3時,y隨x的變化關系是二次函數(shù)關系,且當x=3時,y=4.5;當3≤x≤6時,點P與點B重合,點Q在CB上運動(如圖2),由題意可得PQ=6-x,AP=3,過點Q作QN⊥BC于點N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即當3≤x≤6時,y隨x的變化關系是一次函數(shù),且當x=6時,y=0.由此可得,只有選項D符合要求,故選D.【點睛】本題考查了動點函數(shù)圖象,解決本題要正確分析動線運動過程,然后再正確計算其對應的函數(shù)解析式,由函數(shù)的解析式對應其圖象,由此即可解答.10、B【解析】

根據(jù)頻數(shù)÷頻率=總數(shù)可求出參加人數(shù),根據(jù)分別求出5分、15分、0分的人數(shù),即可求出平均分,根據(jù)0分的頻率即可求出800人中0分的人數(shù),根據(jù)中位數(shù)的定義求出中位數(shù),對選項進行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學參加知識競賽的平均成績?yōu)椋?10,故選項B正確;∵0分同學10人,其頻率為0.2,∴800名學生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學的成績?yōu)?0分、15分,∴抽到同學參加知識競賽成績的中位數(shù)為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數(shù)及中位數(shù)的定義,熟練掌握相關知識是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、有兩個不相等的實數(shù)根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數(shù)根.故答案為有兩個不相等的實數(shù)根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.12、【解析】

首先求得每個外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數(shù)是:=30°,則每一個內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.13、2【解析】

根據(jù)算術平方根的定義,求數(shù)a的算術平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術平方根,特別地,規(guī)定0的算術平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術平方根,熟記定義是關鍵.14、4x=5(x-4)【解析】按照面積作為等量關系列方程有4x=5(x﹣4).15、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征;矩形的性質,利用數(shù)形結合思想解題是關鍵.16、+2【解析】

根據(jù)平行四邊形的判定與性質得到四邊形DBFC是平行四邊形,則DC=BF,故AF=2AB=2DC,結合三角形法則進行解答.【詳解】如圖,連接BD,F(xiàn)C,∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是邊BC的中點,∴,∴EC=BE,即點E是DF的中點,∴四邊形DBFC是平行四邊形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.【點睛】此題考查了平面向量的知識、相似三角形的判定與性質以及平行四邊形的性質.注意掌握三角形法則的應用是關鍵.三、解答題(共8題,共72分)17、【解析】試題分析:按照解一元一次不等式的步驟解不等式即可.試題解析:,,.解集在數(shù)軸上表示如下點睛:解一元一次不等式一般步驟:去分母,去括號,移項,合并同類項,把系數(shù)化為1.18、解:原式=,.【解析】

試題分析:先將括號里面的通分后,將除法轉換成乘法,約分化簡.然后代x的值,進行二次根式化簡.解:原式=.當x=-1時,原式.19、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】

(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【點睛】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標轉換為線段長度,幾何圖形與二次函數(shù)結合的問題,最后一問推出CG=HG為解題關鍵.20、(1)10,1;(2).【解析】

(1)將點代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質求出最大值即可;(2)求出對稱軸為直線,可知點關于對稱軸的對稱點是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標為.,∴當時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點關于對稱軸的對稱點是,又∵函數(shù)圖象開口向下,∴當時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的性質,解題的關鍵是熟悉待定系數(shù)法以及二次函數(shù)的性質.21、1.【解析】

直接利用絕對值的性質以及特殊角的三角函數(shù)值分別化簡得出答案.【詳解】3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118=3×+2﹣﹣1﹣1=+2﹣﹣1﹣1=1.【點睛】本題考查了絕對值的性質以及特殊角的三角函數(shù)值,解題的關鍵是熟練的掌握絕對值的性質以及特殊角的三角函數(shù)值.22、(1)y=﹣x2+2x+1;(2)P(,);(1)當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【解析】

(1)先求得點B和點C的坐標,然后將點B和點C的坐標代入拋物線的解析式得到關于b、c的方程,從而可求得b、c的值;(2)作點O關于BC的對稱點O′,則O′(1,1),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點P的坐標;(1)先求得點D的坐標,然后求得CD、BC、BD的長,依據(jù)勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.【詳解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).將C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴拋物線的解析式為y=﹣x2+2x+1.(2)如圖所示:作點O關于BC的對稱點O′,則O′(1,1).∵O′與O關于BC對稱,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程為y=P點滿足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴當Q的坐標為(0,0)時,△AQC∽△DCB.如圖所示:連接AC,過點C作CQ⊥AC,交x軸與點Q.∵△ACQ為直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).綜上所述,當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【點睛】本題考查了二次函數(shù)的綜合應用,解題的關鍵是掌握待定系數(shù)法求二次函數(shù)的解析式、軸對稱圖形的性質、相似三角形的性質和判定,分類討論的思想.23、(1)點A的坐標為(2,2);(2)y=12x+1;(3)x<-4【解析】

(1)點A在反比例函數(shù)y1=4x上,AC⊥x軸,(2)梯形面積=12(OB+2)×2=3,求出B點坐標,將點A(3)結合圖象直接可求解;【詳解】解:(1)∵點A在y1=4x的圖像上,∴AC?OC=4,∴AC=OC=2∴點A的坐標為(2,2);(2)∵梯形ABOC的面積是3,∴12解得OB=1,∴點B的坐標為(0,1),把點A(2,2)與B(0,1)代入y得2=2k+b解得:k=12,∴一次函數(shù)y2=kx+b的解析式為(3)由題意可知,作出函數(shù)y1=4設函數(shù)y1=4∴聯(lián)立y1=4∴點E的坐標為(-4,-1)∵y1>y2即∴可將圖像分割成如下圖所示:由圖像可知y1>y2所對應的自變量的取值范圍為:【點睛】本題考查反比例函數(shù)和一次函數(shù)的圖形及性質;能夠熟練掌握待定系數(shù)法求函數(shù)的表達式,數(shù)形結合求x的取值范圍是解題的關鍵.24、(1)CE=BD,CE⊥BD.(2)(1)中的結論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點A逆時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論