




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年吉林省延邊二中高考?jí)狠S卷數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.2.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,則方程的最小實(shí)根的值為()A. B. C. D.3.已知函數(shù),不等式對(duì)恒成立,則的取值范圍為()A. B. C. D.4.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.545.在平面直角坐標(biāo)系中,銳角頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊與單位圓交于點(diǎn),則()A. B. C. D.6.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.37.一小商販準(zhǔn)備用元錢(qián)在一批發(fā)市場(chǎng)購(gòu)買(mǎi)甲、乙兩種小商品,甲每件進(jìn)價(jià)元,乙每件進(jìn)價(jià)元,甲商品每賣(mài)出去件可賺元,乙商品每賣(mài)出去件可賺元.該商販若想獲取最大收益,則購(gòu)買(mǎi)甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件8.已知函數(shù),若,則的值等于()A. B. C. D.9.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.10.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.11.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.212.如圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最小值及此時(shí)點(diǎn)的坐標(biāo).14.已知等差數(shù)列滿足,,則的值為_(kāi)_______.15.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)______.16.不等式的解集為_(kāi)_______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角,,的對(duì)邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點(diǎn),求的最小值.18.(12分)小麗在同一城市開(kāi)的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無(wú)人休假,則調(diào)劑1人到該店維持營(yíng)業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(2)設(shè)營(yíng)業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.19.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)A、B,求的值.20.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.21.(12分)在中,角的對(duì)邊分別為.已知,.(1)若,求;(2)求的面積的最大值.22.(10分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(1)求曲線的方程(2)過(guò)點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)?,?duì)恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及指對(duì)同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.2、C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時(shí)的,通過(guò)計(jì)算即可得到答案.【詳解】當(dāng)時(shí),,所以,故當(dāng)時(shí),,所以,而,所以,又當(dāng)時(shí),的極大值為1,所以當(dāng)時(shí),的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時(shí)令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問(wèn)題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識(shí),本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.3、C【解析】
確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時(shí)取最大值,所以.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.4、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.5、A【解析】
根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點(diǎn)在于公式的計(jì)算,識(shí)記公式,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.6、D【解析】
在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí),取最大即可求得結(jié)果.【詳解】因?yàn)椋?,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問(wèn)題,難度較易.7、D【解析】
由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購(gòu)買(mǎi)甲、乙兩種商品的件數(shù)應(yīng)分別,利潤(rùn)為元,由題意,畫(huà)出可行域如圖所示,顯然當(dāng)經(jīng)過(guò)時(shí),最大.故選:D.【點(diǎn)睛】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題,解決此類(lèi)問(wèn)題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫(huà)出可行域,本題是一道基礎(chǔ)題.8、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱(chēng)時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)9、B【解析】
利用復(fù)數(shù)乘法運(yùn)算化簡(jiǎn),由此求得.【詳解】依題意,所以.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.10、A【解析】
是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱(chēng)性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱(chēng)中心的橫坐標(biāo).11、C【解析】
利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長(zhǎng)度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2),.【解析】
(1)利用代入消參的方法即可將兩個(gè)參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點(diǎn)到直線的距離公式,將問(wèn)題轉(zhuǎn)化為求解二次函數(shù)最值的問(wèn)題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設(shè)點(diǎn).點(diǎn)到直線的距離.當(dāng)時(shí),,所以點(diǎn)到直線的距離的最小值為.此時(shí)點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問(wèn)題,屬中檔題.14、11【解析】
由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因?yàn)椋獾霉蚀鸢笧椋骸军c(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
寫(xiě)出展開(kāi)式的通項(xiàng)公式,考慮當(dāng)?shù)闹笖?shù)為零時(shí),對(duì)應(yīng)的值即為常數(shù)項(xiàng).【詳解】的展開(kāi)式通項(xiàng)公式為:,令,所以,所以常數(shù)項(xiàng)為.
故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)系數(shù)的求解,難度較易.解答問(wèn)題的關(guān)鍵是,能通過(guò)展開(kāi)式通項(xiàng)公式分析常數(shù)項(xiàng)對(duì)應(yīng)的取值.16、【解析】
通過(guò)平方,將無(wú)理不等式化為有理不等式求解即可。【詳解】由得,解得,所以解集是?!军c(diǎn)睛】本題主要考查無(wú)理不等式的解法。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡(jiǎn)即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點(diǎn)連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點(diǎn)睛】本題考查正弦定理和余弦定理的實(shí)際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計(jì)算能力.18、(1)(2)見(jiàn)解析,【解析】
(1)根據(jù)題意設(shè)出事件,列出概率,運(yùn)用公式求解;(2)由題得,X的所有可能取值為,根據(jù)(1)和變量對(duì)應(yīng)的事件,可得變量對(duì)應(yīng)的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發(fā)生調(diào)劑現(xiàn)象的概率為P.則,,.所以.答:發(fā)生調(diào)劑現(xiàn)象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點(diǎn)睛】本題是一道考查概率和期望的??碱}型.19、(1),(2)【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)由于在直線上,寫(xiě)出直線的標(biāo)準(zhǔn)參數(shù)方程參數(shù)方程,代入曲線的方程利用參數(shù)的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據(jù)極坐標(biāo)與直角坐標(biāo)之間的相互轉(zhuǎn)化,,,而,則,即,故直線l的普通方程為,曲線C的直角坐標(biāo)方程(2)點(diǎn)在直線l上,且直線的傾斜角為,可設(shè)直線的參數(shù)方程為:(t為參數(shù)),代入到曲線C的方程得,,,由參數(shù)的幾何意義知.【點(diǎn)睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵,難度一般.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)?;(Ⅱ)因?yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.21、(1);(2)4【解析】
(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時(shí),的面積有最大值4.【點(diǎn)睛】本題考查正弦定理、余弦定理、三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 排長(zhǎng)述職報(bào)告
- 工程移交協(xié)議書(shū)(5篇)
- 2025年教案編寫(xiě):如何讓學(xué)生理解火災(zāi)的危害與滅火的方法
- 廉潔自律-從我做起
- 豬肉知識(shí)培訓(xùn)課件
- 2025年中考第一次模擬考試地理(青海卷)(全解全析)
- 國(guó)際商務(wù)談判與合同簽訂作業(yè)指導(dǎo)書(shū)
- 學(xué)校后勤承包經(jīng)營(yíng)合同
- 產(chǎn)品品質(zhì)檢測(cè)協(xié)議
- 2025年湘潭年貨運(yùn)從業(yè)資格證考試答案
- 《審計(jì)課件東北財(cái)經(jīng)大學(xué)會(huì)計(jì)系列教材》課件
- 中國(guó)老年危重患者營(yíng)養(yǎng)支持治療指南2023解讀課件
- 《光伏電站運(yùn)行與維護(hù)》試題及答案一
- 2024年貴州省高職(專(zhuān)科)分類(lèi)考試招收中職畢業(yè)生文化綜合考試語(yǔ)文試題
- 一年級(jí)體育教案全冊(cè)(水平一)下冊(cè)
- 全身麻醉后護(hù)理常規(guī)
- 2024年貴州省貴陽(yáng)市白云區(qū)九年級(jí)中考一模數(shù)學(xué)試題(解析版)
- 500kV超高壓絕緣料和新型特種電纜研發(fā)制造項(xiàng)目可行性研究報(bào)告-立項(xiàng)備案
- 2024年贛南衛(wèi)生健康職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)審定版
- 廣告牌制作安裝應(yīng)急預(yù)案
- 塔吊的安拆培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論