版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省黃山市屯溪區(qū)第二中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,則互斥而不對(duì)立的兩個(gè)事件是()A.恰有1個(gè)黑球與恰有2個(gè)黑球 B.至少有一個(gè)紅球與都是黑球C.至少有一個(gè)黑球與至少有1個(gè)紅球 D.至少有一個(gè)黑球與都是黑球2.已知變量和滿足關(guān)系,變量與正相關(guān).下列結(jié)論中正確的是()A.與負(fù)相關(guān),與負(fù)相關(guān)B.與正相關(guān),與正相關(guān)C.與正相關(guān),與負(fù)相關(guān)D.與負(fù)相關(guān),與正相關(guān)3.已知為直線,,為兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知滿足,則()A.1 B.3 C.5 D.75.“是第二象限角”是“是鈍角”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要6.將函數(shù)的圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是()A. B.C. D.7.直線與直線垂直,則的值為()A.3 B. C.2 D.8.閱讀如圖的程序框圖,運(yùn)行該程序,則輸出的值為()A.3 B.1C.-1 D.09.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或310.設(shè)是等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.兩個(gè)實(shí)習(xí)生加工一個(gè)零件,產(chǎn)品為一等品的概率分別為和,則這兩個(gè)零件中恰有一個(gè)一等品的概率為__________.12.已知,若直線與直線垂直,則的最小值為_____13.已知函數(shù),它的值域是__________.14.?dāng)?shù)列是等比數(shù)列,,,則的值是________.15.已知點(diǎn)P(tanα,cosα)在第三象限,則角α的終邊在第________象限.16.不等式的解集是_________________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,邊長(zhǎng)為2的正方形中.(1)點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求證:;(2)當(dāng)時(shí),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求三棱錐的體積.18.在等比數(shù)列中,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.19.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量與向量垂直,求;(2)若與夾角為銳角,求的取值范圍.20.在中,內(nèi)角A、B、C所對(duì)的邊分別為,,,已知.(Ⅰ)求角B的大?。唬á颍┰O(shè),,求.21.某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.(1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:A:所有芒果以10元/千克收購(gòu);B:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu),通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
從裝有2個(gè)紅球和2個(gè)黑球的口袋中任取2個(gè)球,包括3種情況:①恰有一個(gè)黑球,②恰有兩個(gè)黑球,③沒(méi)有黑球.
故恰有一個(gè)黑球與恰有兩個(gè)黑球不可能同時(shí)發(fā)生,它們是互斥事件,再由這兩件事的和不是必然事件,故他們是互斥但不對(duì)立的事件,
故選:A.2、A【解析】
因?yàn)樽兞亢蜐M足關(guān)系,一次項(xiàng)系數(shù)為,所以與負(fù)相關(guān);變量與正相關(guān),設(shè),所以,得到,一次項(xiàng)系數(shù)小于零,所以與負(fù)相關(guān),故選A.3、C【解析】
利用直線與平面平行、垂直的判斷即可?!驹斀狻繉?duì)于A.若,,則或,所以A錯(cuò)對(duì)于B.若,,則,應(yīng)該為,所以B錯(cuò)對(duì)于D.若,,則或,所以D錯(cuò)。所以選擇C【點(diǎn)睛】本題主要考查了直線與平面垂直和直線與平面平行的性質(zhì)。屬于基礎(chǔ)題。4、B【解析】
已知兩個(gè)邊和一個(gè)角,由余弦定理,可得。【詳解】由題得,,,代入,化簡(jiǎn)得,解得(舍)或.故選:B【點(diǎn)睛】本題考查用余弦定理求三角形的邊,是基礎(chǔ)題。5、B【解析】
由α是鈍角可得α是第二象限角,反之不成立,則答案可求.【詳解】若α是鈍角,則α是第二象限角;反之,若α是第二象限角,α不一定是鈍角,如α=﹣210°.∴“α是第二象限角”是“α是鈍角”的必要非充分條件.故選B.【點(diǎn)睛】本題考查鈍角、象限角的概念,考查了充分必要條件的判斷方法,是基礎(chǔ)題.6、C【解析】
將函數(shù)的圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,所得函數(shù)圖象的解析式為y=sin(x-);再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是.故選C.7、A【解析】
根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A【點(diǎn)睛】本小題主要考查兩條直線垂直的條件,屬于基礎(chǔ)題.8、D【解析】
從起始條件、開始執(zhí)行程序框圖,直到終止循環(huán).【詳解】,,,,,輸出.【點(diǎn)睛】本題是直到型循環(huán),只要滿足判斷框中的條件,就終止循環(huán),考查讀懂簡(jiǎn)單的程序框圖.9、C【解析】
直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因?yàn)橹本€kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點(diǎn)睛】本題主要考查直線與直線垂直的充要條件,屬于基礎(chǔ)題.對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問(wèn)題以簡(jiǎn)單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1)l1||l2?k110、B【解析】
由,可得,解得或,根據(jù)等比數(shù)列的單調(diào)性的判定方法,結(jié)合充分、必要條件的判定方法,即可求解,得到答案.【詳解】設(shè)等比數(shù)列的公比為,則,可得,解得或,此時(shí)數(shù)列不一定是遞增數(shù)列;若數(shù)列為遞增數(shù)列,可得或,所以“”是“數(shù)列為遞增數(shù)列”的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式與單調(diào)性,以及充分條件、必要條件的判定,其中解答中熟記等比數(shù)列的單調(diào)性的判定方法是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用相互獨(dú)立事件概率乘法公式直接求解.【詳解】解:兩個(gè)實(shí)習(xí)生加工一個(gè)零件,產(chǎn)品為一等品的概率分別為和,這兩個(gè)零件中恰有一個(gè)一等品的概率為:.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.12、8【解析】
兩直線斜率存在且互相垂直,由斜率乘積為-1求得等式,把目標(biāo)式子化成,運(yùn)用基本不等式求得最小值.【詳解】設(shè)直線的斜率為,,直線的斜率為,,兩條直線垂直,,整理得:,,等號(hào)成立當(dāng)且僅當(dāng),的最小值為.【點(diǎn)睛】利用“1”的代換,轉(zhuǎn)化成可用基本不等式求最值,考查轉(zhuǎn)化與化歸的思想.13、【解析】
由反余弦函數(shù)的值域可求出函數(shù)的值域.【詳解】,,因此,函數(shù)的值域?yàn)?故答案為:.【點(diǎn)睛】本題考查反三角函數(shù)值域的求解,解題的關(guān)鍵就是依據(jù)反余弦函數(shù)的值域進(jìn)行計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
由題得計(jì)算得解.【詳解】由題得,所以.因?yàn)榈缺葦?shù)列同號(hào),所以.故答案為:【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項(xiàng)的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、二【解析】
由點(diǎn)P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因?yàn)辄c(diǎn)P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點(diǎn)評(píng):本題考查第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào),以及三角函數(shù)在各個(gè)象限內(nèi)的符號(hào).16、【解析】
可先求出一元二次方程的兩根,即可得到不等式的解集.【詳解】由于的兩根分別為:,,因此不等式的解集是.【點(diǎn)睛】本題主要考查一元二次不等式的求解,難度不大.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】
(1)折疊過(guò)程中,,保持不變,即,,由此可得線面垂直,從而有線線垂直;(2)由(1)知面,即是三棱錐的高,求出底面積可得體積.【詳解】(1)證明:由,.可得:,,,面又面(2)解:在三棱錐中,,,面,由,,可得.【點(diǎn)睛】本題考查證明線線垂直,考查求棱錐的體積.立體幾何中證明線線垂直,通常由線面垂直的性質(zhì)定理給出,即先證線面垂直,而證線面垂直又必須證明線線垂直,注意線線垂直與線面垂直的轉(zhuǎn)化.三棱錐中任何一個(gè)面都可以當(dāng)作底面,因此一般尋找高易得的面為底面,常用換底法求體積.18、(1);(2).【解析】
(1)設(shè)出通項(xiàng)公式,利用待定系數(shù)法即得結(jié)果;(2)先求出通項(xiàng),利用錯(cuò)位相減法可以得到前項(xiàng)和.【詳解】(1)因?yàn)椋?,所以,解得故的通?xiàng)公式為.(2)由(1)可得,則,①,②①-②得故.【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法求和,意在考查學(xué)生的分析能力及計(jì)算能力,難度中等.19、(1)10或2;(2).【解析】
(1)由向量與向量垂直,求得或,進(jìn)而求得的坐標(biāo),利用模的計(jì)算公式,即可求解;(2)因?yàn)榕c夾角為銳角,所以,且與不共線,列出不等關(guān)系式,即可求解.【詳解】(1)由題意,平面向量,,由向量與向量垂直,則,解得或,當(dāng)時(shí),,則,所;當(dāng)時(shí),,則,所,(2)因?yàn)榕c夾角為銳角,所以,且與不共線,即且,解得,且,即的取值范圍為.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的垂直條件,以及向量的數(shù)量積的應(yīng)用,著重考查了推理運(yùn)算能力,屬于基礎(chǔ)題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化簡(jiǎn)整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【詳解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,則.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【點(diǎn)睛】本題考查了正弦定理、余弦定理、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.21、(1)中位數(shù)為268.75;(2);(3)選B方案【解析】
(1)根據(jù)中位數(shù)左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計(jì)算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆明醫(yī)科大學(xué)海源學(xué)院《應(yīng)急管理信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西財(cái)經(jīng)職業(yè)學(xué)院《飛機(jī)結(jié)構(gòu)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南三一工業(yè)職業(yè)技術(shù)學(xué)院《新課程理念與地理課程改革》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南安全技術(shù)職業(yè)學(xué)院《有限元方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】《流體壓強(qiáng)與流速的關(guān)系》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教版(2024)初中物理八年級(jí)下冊(cè)
- 高考物理總復(fù)習(xí)《恒定電流》專項(xiàng)測(cè)試卷含答案
- 重慶工信職業(yè)學(xué)院《廣告策劃與設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州電力職業(yè)技術(shù)學(xué)院《應(yīng)用技術(shù)開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國(guó)民用航空飛行學(xué)院《信息系統(tǒng)審計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州美術(shù)學(xué)院《建筑設(shè)備自動(dòng)化課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 餐飲行業(yè)智慧餐廳管理系統(tǒng)方案
- 2025年度生物醫(yī)藥技術(shù)研發(fā)與許可協(xié)議3篇
- 電廠檢修安全培訓(xùn)課件
- 殯葬改革課件
- 雙方個(gè)人協(xié)議書模板
- 車站安全管理研究報(bào)告
- 瑪米亞RB67中文說(shuō)明書
- 五年級(jí)數(shù)學(xué)(小數(shù)四則混合運(yùn)算)計(jì)算題專項(xiàng)練習(xí)及答案
- 2024年鋼鐵貿(mào)易行業(yè)前景分析:鋼鐵貿(mào)易行業(yè)發(fā)展趨勢(shì)推動(dòng)行業(yè)可持續(xù)發(fā)展
- 節(jié)前物業(yè)安全培訓(xùn)
- 初中中考英語(yǔ)總復(fù)習(xí)《代詞動(dòng)詞連詞數(shù)詞》思維導(dǎo)圖
評(píng)論
0/150
提交評(píng)論