甘肅省合水縣第一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
甘肅省合水縣第一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
甘肅省合水縣第一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
甘肅省合水縣第一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
甘肅省合水縣第一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省合水縣第一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法中正確的是(

)A.棱柱的側(cè)面可以是三角形B.正方體和長方體都是特殊的四棱柱C.所有的幾何體的表面都能展成平面圖形D.棱柱的各條棱都相等2.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.3.在平行四邊形中,,,則點(diǎn)的坐標(biāo)為()A. B. C. D.4.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點(diǎn),垂足為E,點(diǎn)F是PB上一點(diǎn),則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC5.若a,b是方程的兩個根,且a,b,2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值為()A.-4 B.-3 C.-2 D.-16.過曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為()A. B. C. D.7.下列函數(shù)中,既是偶函數(shù),又在上遞增的函數(shù)的個數(shù)是().①;②;③;④向右平移后得到的函數(shù).A. B. C. D.8.已知數(shù)列,滿足,若,則()A. B. C. D.9.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a410.若數(shù)列{an}前8項的值各異,且an+8=an對任意n∈N*都成立,則下列數(shù)列中可取遍{an}前8項值的數(shù)列為()A.{a2k+1} B.{a3k+1} C.{a4k+1} D.{a6k+1}二、填空題:本大題共6小題,每小題5分,共30分。11.382與1337的最大公約數(shù)是__________.12.正六棱柱各棱長均為,則一動點(diǎn)從出發(fā)沿表面移動到時的最短路程為__________.13.設(shè)等差數(shù)列的前項和為,若,,則______.14.中,,,,則________.15.若數(shù)據(jù)的平均數(shù)為,則____________.16.?dāng)?shù)列中,若,,則______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.18.已知等比數(shù)列的各項均為正數(shù),且,,數(shù)列的前項和.(1)求;(2)記,求數(shù)列的前項和.19.已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.(Ⅰ)求證:數(shù)列是等差數(shù)列;(Ⅱ)求數(shù)列,的通項公式;(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.20.在三棱錐中,平面平面,,,分別是棱,上的點(diǎn)(1)為的中點(diǎn),求證:平面平面.(2)若,平面,求的值.21.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,然后再向右平移()個單位長度,所得函數(shù)的圖象關(guān)于軸對稱.求的最小值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:棱柱的側(cè)面是平行四邊形,不可能是三角形,所以A不正確;球的表面就不能展成平面圖形,所以C不正確;棱柱的側(cè)棱與底面邊長不一定相等,所以D不正確.考點(diǎn):本小題主要考查空間幾何體的性質(zhì).點(diǎn)評:解決此類問題的主要依據(jù)是空間幾何體的性質(zhì),需要學(xué)生有較強(qiáng)的空間想象能力.2、C【解析】

根據(jù)不等式的基本性質(zhì),對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點(diǎn)睛】考查基本不等式性質(zhì)運(yùn)用和中位數(shù)的定義.3、A【解析】

先求,再求,即可求D坐標(biāo)【詳解】,∴,則D(6,1)故選A【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,熟記運(yùn)算法則,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題4、C【解析】

根據(jù)線面垂直的性質(zhì)及判定,可判斷ABC選項,由面面垂直的判定可判斷D.【詳解】對于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質(zhì)可知,且,則平面PAC.所以A正確;對于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯誤.對于D,由A、B可知,平面PAC,平面,由面面垂直的性質(zhì)可得平面平面PBC.所以D正確;綜上可知,C為錯誤選項.故選:C.【點(diǎn)睛】本題考查了線面垂直的性質(zhì)及判定,面面垂直的判定定理,屬于基礎(chǔ)題.5、D【解析】

由韋達(dá)定理確定,,利用已知條件討論成等差數(shù)列和等比數(shù)列的位置,從而確定的值.【詳解】由韋達(dá)定理得:,,所以,由題意這三個數(shù)可適當(dāng)排序后成等比數(shù)列,且,則2一定在中間所以,即因為這三個數(shù)可適當(dāng)排序后成等差數(shù)列,且,則2一定不在的中間假設(shè),則即故選D【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的基本性質(zhì),解決本題的關(guān)鍵是要掌握三個數(shù)成等差數(shù)列和等比數(shù)列的性質(zhì),如成等比數(shù)列,且,,則2必為等比中項,有.6、C【解析】

設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點(diǎn)F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),分析得到當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時,∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.7、B【解析】

將①②③④中的函數(shù)解析式化簡,分析各函數(shù)的奇偶性及其在區(qū)間上的單調(diào)性,可得出結(jié)論.【詳解】對于①中的函數(shù),該函數(shù)為偶函數(shù),當(dāng)時,,該函數(shù)在區(qū)間上不單調(diào);對于②中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞減;對于③中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞增;對于④,將函數(shù)向右平移后得到的函數(shù)為,該函數(shù)為奇函數(shù),且當(dāng)時,,則函數(shù)在區(qū)間上不單調(diào).故選:B.【點(diǎn)睛】本題考查三角函數(shù)單調(diào)性與奇偶性的判斷,同時也考查了三角函數(shù)的相位變換,熟悉正弦、余弦和正切函數(shù)的基本性質(zhì)是判斷的關(guān)鍵,考查推理能力,屬于中等題.8、C【解析】

利用遞推公式計算出數(shù)列的前幾項,找出數(shù)列的周期,然后利用周期性求出的值.【詳解】,且,,,,所以,,則數(shù)列是以為周期的周期數(shù)列,.故選:C.【點(diǎn)睛】本題考查利用數(shù)列遞推公式求數(shù)列中的項,推導(dǎo)出數(shù)列的周期是解本題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.9、C【解析】

在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,

在驗證時,把當(dāng)代入,左端.

故選:C.【點(diǎn)睛】此題主要考查數(shù)學(xué)歸納法證明等式的問題,屬于概念性問題.10、B【解析】

數(shù)列是周期為8的數(shù)列;,;故選B二、填空題:本大題共6小題,每小題5分,共30分。11、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因為,,所以382與1337的最大公約數(shù)為191,故填:.【點(diǎn)睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.12、【解析】

根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側(cè)面和上表面到D1的路程最短為故答案為:.【點(diǎn)睛】本題主要考查了空間幾何體展形圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.13、10【解析】

將和用首項和公差表示,解方程組,求出首項和公式,利用公式求解.【詳解】設(shè)該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點(diǎn)睛】本題考查由基本量計算等差數(shù)列的通項公式以及前項和,屬基礎(chǔ)題.14、7【解析】

在中,利用余弦定理得到,即可求解,得到答案.【詳解】由余弦定理可得,解得.故答案為:7.【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,其中解答中熟記三角形的余弦定理,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)求平均數(shù)的公式,得到關(guān)于的方程,求得.【詳解】由題意得:,解得:,故填:.【點(diǎn)睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.16、【解析】

先分組求和得,再根據(jù)極限定義得結(jié)果.【詳解】因為,,……,,所以則.【點(diǎn)睛】本題考查分組求和法、等比數(shù)列求和、以及數(shù)列極限,考查基本求解能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】

(1)先求出公差和首項,可得通項公式;(2)由(1)可得前項和,由二次函數(shù)性質(zhì)可得最小值(只要注意取正整數(shù)).【詳解】(1)設(shè)的公差為,由題意得,,解得,.所以的通項公式為.(2)由(1)得因為所以當(dāng)或時,取得最小值,最小值為-30.【點(diǎn)睛】本題考查等差數(shù)列的通項公式和前項和公式,方法叫基本量法.18、(1)(2)【解析】

(1)先設(shè)等比數(shù)列的公比為,再求解即可;(2)由已知條件可得,再利用錯位相減法求和即可.【詳解】解:(1)設(shè)等比數(shù)列的公比為,則,由,,則,即,則,(2)由數(shù)列的前項和,則,即當(dāng)時,,即,又,所以,,①,②①-②得:,即.【點(diǎn)睛】本題考查了等比數(shù)列通項公式的求法,重點(diǎn)考查了錯位相減法求數(shù)列前項和,屬中檔題.19、(Ⅰ)見解析;(Ⅱ),;(Ⅲ)a≤1【解析】

(Ⅰ)由已知得,即,由2b1=a1+a2=25,得b1=,由a22=b1b2,得b2=18,∴{}是以為首項,為公差的等差數(shù)列.(Ⅱ)由(Ⅰ)知,∴,因為,,成等比數(shù)列所以.(Ⅲ)由(Ⅱ)知,原式化為,即f(n)=恒成立,當(dāng)a–1>0即a>1時,不合題意;當(dāng)a–1=0即a=1時,滿足題意;當(dāng)a–1<0即a<1時,f(n)的對稱軸為,f(n)單調(diào)遞減,∴只需f(1)=4a–15<0,可得a<,∴a<1;綜上,a≤1.20、(1)證明見解析;(2)【解析】

(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進(jìn)而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【詳解】(1),為的中點(diǎn),所以.又因為平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論