遼寧省遼陽縣2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
遼寧省遼陽縣2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
遼寧省遼陽縣2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
遼寧省遼陽縣2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
遼寧省遼陽縣2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

遼寧省遼陽縣2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某小組由名男生、名女生組成,現(xiàn)從中選出名分別擔(dān)任正、副組長,則正、副組長均由男生擔(dān)任的概率為()A. B. C. D.2.等差數(shù)列滿足,則其前10項之和為()A.-9 B.-15 C.15 D.3.已知、的取值如下表所示:如果與呈線性相關(guān),且線性回歸方程為,則()A. B. C. D.4.已知內(nèi)角的對邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形5.函數(shù)的單調(diào)減區(qū)間為()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)6.等差數(shù)列中,,則的值為()A.14 B.17 C.19 D.217.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若,則△ABC是A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形8.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件9.在中,角的對邊分別為,且,,,則的周長為()A. B. C. D.10.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于30,該女子所需的天數(shù)至少為()A.7 B.8 C.9 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為________.12.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.13.已知向量,則________14.已知數(shù)列從第項起每項都是它前面各項的和,且,則的通項公式是__________.15.在等差數(shù)列中,,,則公差______.16.不等式的解集為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,求角A的值。18.內(nèi)角的對邊分別為,已知.(1)求;(2)若,,求的面積.19.已知的內(nèi)角A,B,C所對的邊分別為a,b,c,其外接圓的面積為,且.(1)求邊長c;(2)若的面積為,求的周長.20.已知,是平面內(nèi)兩個不共線的非零向量,,,且,,三點共線.(1)求實數(shù)的值;(2)若,,求的坐標(biāo);(3)已知,在(2)的條件下,若,,,四點按逆時針順序構(gòu)成平行四邊形,求點的坐標(biāo).21.已知圓過點.(1)點,直線經(jīng)過點A且平行于直線,求直線的方程;(2)若圓心的縱坐標(biāo)為2,求圓的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)古典概型的概率計算公式,先求出基本事件總數(shù),正、副組長均由男生擔(dān)任包含的基本事件總數(shù),由此能求出正、副組長均由男生擔(dān)任的概率.【詳解】某小組由2名男生、2名女生組成,現(xiàn)從中選出2名分別擔(dān)任正、副組長,基本事件總數(shù),正、副組長均由男生擔(dān)任包含的基本事件總數(shù),正、副組長均由男生擔(dān)任的概率為.故選.【點睛】本題主要考查古典概型的概率求法。2、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,從而a1+a10=±3.所以S10=×10=±15.故選D.3、A【解析】

計算出、,再將點的坐標(biāo)代入回歸直線方程,可求出的值.【詳解】由表格中的數(shù)據(jù)可得,,由于回歸直線過樣本的中心點,則有,解得,故選:A.【點睛】本題考查回歸直線方程中參數(shù)的計算,解題時要充分利用回歸直線過樣本的中心點這一結(jié)論,考查計算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)正弦定理可得和,然后對進(jìn)行分類討論,結(jié)合三角形的性質(zhì),即可得到結(jié)果.【詳解】在中,因為,所以,又,所以,又當(dāng)時,因為,所以時等邊三角形;當(dāng)時,因為,所以不存在,綜上:一定是等邊三角形.故選:B.【點睛】本題主要考查了正弦定理的應(yīng)用,解題過程中注意兩解得情況,一般需要檢驗,本題屬于基礎(chǔ)題.5、C【解析】

根據(jù)復(fù)合函數(shù)的單調(diào)性,得到函數(shù)的減區(qū)間,即為的增區(qū)間,且,根據(jù)三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】由題意,函數(shù)在定義域上是減函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)的減區(qū)間,即的增區(qū)間,且,則,得,則函數(shù)的單調(diào)遞減區(qū)間為,故選C.【點睛】本題主要考查了對數(shù)函數(shù)及三角函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記對數(shù)函數(shù)的性質(zhì),以及三角函數(shù)的圖象與性質(zhì),根據(jù)復(fù)合函數(shù)的單調(diào)性進(jìn)行判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、B【解析】

利用等差數(shù)列的性質(zhì),.【詳解】,解得:.故選B.【點睛】本題考查了等比數(shù)列的性質(zhì),屬于基礎(chǔ)題型.7、A【解析】

由正弦定理,記,則,,,又,所以,即,所以.故選:A.8、A【解析】

“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【點睛】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.9、C【解析】

根據(jù),得到,利用余弦定理,得到關(guān)于的方程,從而得到的值,得到的周長.【詳解】在中,由正弦定理因為,所以因為,,所以由余弦定理得即,解得,所以所以的周長為.故選C.【點睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡單題.10、B【解析】試題分析:設(shè)該女子第一天織布尺,則,解得,所以前天織布的尺數(shù)為,由,得,解得的最小值為,故選B.考點:等比數(shù)列的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

圓柱的側(cè)面打開是一個矩形,長為底面的周長,寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因為圓柱的底面圓的半徑為2,所以圓柱的底面圓的周長為,則該圓柱的側(cè)面積為.【點睛】此題考察圓柱側(cè)面積公式,屬于基礎(chǔ)題目.12、【解析】

利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案為-2..【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項,考查學(xué)生的計算能力,屬基礎(chǔ)題..13、2【解析】

由向量的模長公式,計算得到答案.【詳解】因為向量,所以,所以答案為.【點睛】本題考查向量的模長公式,屬于簡單題.14、【解析】

列舉,可找到是從第項起的等比數(shù)列,由首項和公比即可得出通項公式.【詳解】解:,即,所以是從第項起首項,公比的等比數(shù)列.通項公式為:故答案為:【點睛】本題考查數(shù)列的通項公式,可根據(jù)遞推公式求出.15、3【解析】

根據(jù)等差數(shù)列公差性質(zhì)列式得結(jié)果.【詳解】因為,,所以.【點睛】本題考查等差數(shù)列公差,考查基本分析求解能力,屬基礎(chǔ)題.16、【解析】因為所以,即不等式的解集為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、或【解析】

根據(jù)的值可確定,進(jìn)而得到,利用兩角和差公式、二倍角公式和輔助角公式化簡求值可求得,根據(jù)所處范圍可求得的值,進(jìn)而求得角.【詳解】且或或【點睛】本題考查利用三角恒等變換的公式化簡求值的問題,涉及到兩角和差的正弦公式、二倍角公式和輔助角公式的應(yīng)用、特殊角三角函數(shù)值的求解問題;關(guān)鍵是能夠通過三角恒等變換公式,整理化簡已知式子,得到與所求角有關(guān)的角的三角函數(shù)值.18、(1);(2).【解析】

(1)應(yīng)用正弦的二倍角公式結(jié)合正弦定理可得,從而得.(2)用余弦定理求得,再由三角形面積公式可得三角形面積.【詳解】(1)因為,由正弦定理,因為,,所以.因為,所以.(2)因為,,,由余弦定理得,解得或,均適合題.當(dāng)時,的面積為.當(dāng)時,的面積為.【點睛】本題考查二倍角公式,正弦定理,余弦定理,考查三角形面積公式.三角形中可用公式很多,關(guān)鍵是確定先用哪個公式,再用哪個公式,象本題第(2)小題選用余弦定理求出,然后可直接求出三角形面積,解法簡捷.19、(1)(2)【解析】

(1)計算得到,,利用正弦定理計算得到答案.(2)根據(jù)余弦定理得到,根據(jù)面積公式得到,得到答案.【詳解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周長為.【點睛】本題考查了正弦定理,余弦定理和面積公式,意在考查學(xué)生的計算能力.20、(1);(2);(3).【解析】

(1)根據(jù),,三點共線,列出向量與共線的表達(dá)式,然后根據(jù)坐標(biāo)求解即可;(2)根據(jù),列坐標(biāo)即可求解;(3)根據(jù)平行四邊形可以推出對邊的向量相等,根據(jù)向量相等代入坐標(biāo)求解即可求出點的坐標(biāo).【詳解】(1),∵,,三點共線,∴存在實數(shù),使得,即,得,∵,是平面內(nèi)兩個不共線的非零向量,∴,解得,;(2);(3)∵,,,四點按逆時針順序構(gòu)成平行四邊形,∴,設(shè),則,∵,∴,解得,即點的坐標(biāo)為.【點睛】本題主要考查了平面向量共線,平面向量的線性運算,平面向量的相等,屬于一般題.21、(1);(2).【解析】

(1)求出直線的斜率,由直線與直線平行,可知這兩條直線的斜率相等,再利用點斜式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論