版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
臨夏市重點中學2023-2024學年數(shù)學高一下期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列的前項和為,若,,則數(shù)列的公比()A. B. C.或 D.以上都不對2.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.33.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一比值也可以表示為a=2cos72°,則=()A. B.1 C.2 D.4.用數(shù)學歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a45.若,直線的傾斜角等于()A. B. C. D.6.函數(shù)(且)的圖像是下列圖像中的()A. B.C. D.7.將甲、乙兩個籃球隊5場比賽的得分數(shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結(jié)論正確的是()A.甲隊平均得分高于乙隊的平均得分中乙B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù)C.甲隊得分的方差大于乙隊得分的方差D.甲乙兩隊得分的極差相等8.如圖,在下列四個正方體中,,,,,,,為所在棱的中點,則在這四個正方體中,陰影平面與所在平面平行的是()A. B.C. D.9.若,A點的坐標為,則B點的坐標為()A. B. C. D.10.已知是第三象限的角,若,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),的值域是_____.12.體積為8的一個正方體,其全面積與球的表面積相等,則球的體積等于________.13.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.14.若等比數(shù)列滿足,且公比,則_____.15.中,,,,則________.16.若八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的方差是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知的三個頂點,,.(1)求邊所在直線的方程;(2)求邊上中線所在直線的方程.18.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):x24568y3040605070(1)若廣告費與銷售額具有相關(guān)關(guān)系,求回歸直線方程;(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求兩組數(shù)據(jù)其預測值與實際值之差的絕對值都不超過5的概率.19.某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結(jié)論)②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖20.已知直線和.(1)若與互相垂直,求實數(shù)的值;(2)若與互相平行,求與與間的距離,21.已知向量,(1)若,求的坐標;(2)若與垂直,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)和可得,解得結(jié)果即可.【詳解】由得,所以,所以,所以,解得或故選:C.【點睛】本題考查了等比數(shù)列的通項公式的基本量的運算,屬于基礎(chǔ)題.2、A【解析】
利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點睛】本題考查正弦定理及余弦定理推論的應(yīng)用.3、A【解析】
根據(jù)已知利用同角三角函數(shù)基本關(guān)系式,二倍角公式、誘導公式化簡即可求值得解.【詳解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°?2sin72°=2sin144°=2sin36°,∴.故選:A.【點睛】本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式、誘導公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.4、C【解析】
在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【詳解】解:用數(shù)學歸納法證明,
在驗證時,把當代入,左端.
故選:C.【點睛】此題主要考查數(shù)學歸納法證明等式的問題,屬于概念性問題.5、A【解析】
根據(jù)以及可求出直線的傾斜角.【詳解】,,且直線的斜率為,因此,直線的傾斜角為.故選:A.【點睛】本題考查直線傾斜角的計算,要熟悉斜率與傾斜角之間的關(guān)系,還要根據(jù)傾斜角的取值范圍來求解,考查計算能力,屬于基礎(chǔ)題.6、C【解析】
將函數(shù)表示為分段函數(shù)的形式,由此確定函數(shù)圖像.【詳解】依題意,.由此判斷出正確的選項為C.故選C.【點睛】本小題主要考查三角函數(shù)圖像的識別,考查分段函數(shù)解析式的求法,考查同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.7、C【解析】
由莖葉圖分別計算甲、乙的平均數(shù),中位數(shù),方差及極差可得答案.【詳解】29;30,∴∴A錯誤;甲的中位數(shù)是29,乙的中位數(shù)是30,29<30,∴B錯誤;甲的極差為31﹣26=5,乙的極差為32﹣28=4,5∴D錯誤;排除可得C選項正確,故選C.【點睛】本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù),極差,中位數(shù),運用了選擇題的做法即排除法的解題技巧,屬于基礎(chǔ)題.8、A【解析】
根據(jù)線面平行判定定理以及作截面逐個分析判斷選擇.【詳解】A中,因為,所以可得平面,又,可得平面,從而平面平面B中,作截面可得平面平面(H為C1D1中點),如圖:C中,作截面可得平面平面(H為C1D1中點),如圖:D中,作截面可得為兩相交直線,因此平面與平面不平行,如圖:【點睛】本題考查線面平行判定定理以及截面,考查空間想象能力與基本判斷論證能力,屬中檔題.9、A【解析】
根據(jù)向量坐標的求解公式可求.【詳解】設(shè),因為A點的坐標為,所以.所以,即.故選:A.【點睛】本題主要考查平面向量坐標的運算,側(cè)重考查數(shù)學運算的核心素養(yǎng).10、D【解析】
根據(jù)是第三象限的角得,利用同角三角函數(shù)的基本關(guān)系,求得的值.【詳解】因為是第三象限的角,所以,因為,所以解得:,故選D.【點睛】本題考查余弦函數(shù)在第三象限的符號及同角三角函數(shù)的基本關(guān)系,即已知值,求的值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先根據(jù)的范圍求出的范圍,從而求出值域?!驹斀狻慨敃r,,由于反余弦函數(shù)是定義域上的減函數(shù),且所以值域為故答案為:.【點睛】本題主要考查了復合函數(shù)值域的求法:首先求出內(nèi)函數(shù)的值域再求外函數(shù)的值域。屬于基礎(chǔ)題。12、【解析】
由體積為的一個正方體,棱長為,全面積為,則,,球的體積為,故答案為.考點:正方體與球的表面積及體積的算法.13、20【解析】
先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【詳解】設(shè)的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當時,取得最大值400故答案為:20【點睛】等差數(shù)列的是關(guān)于的二次函數(shù),但要注意只能取正整數(shù).14、.【解析】
利用等比數(shù)列的通項公式及其性質(zhì)即可得出.【詳解】,故答案為:1.【點睛】本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于容易題.15、7【解析】
在中,利用余弦定理得到,即可求解,得到答案.【詳解】由余弦定理可得,解得.故答案為:7.【點睛】本題主要考查了余弦定理的應(yīng)用,其中解答中熟記三角形的余弦定理,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、1.1【解析】
先求出這組數(shù)據(jù)的平均數(shù),由此能求出這組數(shù)據(jù)的方差.【詳解】八個學生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的平均數(shù)為:(87+88+90+91+92+93+93+94)=91,∴這組數(shù)據(jù)的方差為:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案為1.1.【點睛】本題考查方差的求法,考查平均數(shù)、方差的性質(zhì)等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由直線的兩點式方程求解即可;(2)先由中點坐標公式求出中點的坐標,再結(jié)合直線的兩點式方程求解即可.【詳解】(1)因為,,由直線的兩點式方程可得:邊所在直線的方程,化簡可得;(2)由,,則中點,即,則邊上中線所在直線的方程為,化簡可得.【點睛】本題考查了中點坐標公式,重點考查了直線的兩點式方程,屬基礎(chǔ)題.18、(1);(2).【解析】
(1)首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.(2)由古典概型列舉基本事件求解即可【詳解】(1),因此,所求回歸直線方程為:.(2)x24568y304060507030.543.55056.569.5基本事件:共10個,兩組數(shù)據(jù)其預測值與實際值之差的絕對值都不超過5:共3個所以兩組數(shù)據(jù)其預測值與實際值之差的絕對值都超過5的概率為.【點睛】本題考查回歸分析的初步應(yīng)用,考查求線性回歸方程,考查古典概型,是基礎(chǔ)題19、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】
(1)先計算抽樣比為,進而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人需抽取的人數(shù),再算出和即可.畫出頻率分布直方圖,從直方圖可以判斷:類工人中個體間的差異程度更小②取每個小矩形的橫坐標的中點乘以對應(yīng)矩形的面積相加即得平均數(shù).【詳解】(1)由已知可得:抽樣比,故類工人中應(yīng)抽取:人,類工人中應(yīng)抽取:人,(2)①由題意知,得,,得.滿足條件的頻率分布直方圖如下所示:從直方圖可以判斷:類工人中個體間的差異程度更小.②,類工人生產(chǎn)能力的平均數(shù),類工人生產(chǎn)能力的平均數(shù)以及全工廠工人生產(chǎn)能力的平均數(shù)的估計值分別為123,133.8和131.1【點睛】本題考查等可能事件、相互獨立事件的概率、頻率分布直方圖的理解以及利用頻率分布直方圖求平均數(shù)等知識、考查運算能力.20、(1)(2)【解析】
(1)根據(jù)直線垂直的公式求解即可.(2)根據(jù)直線平行的公式求解,再利用平行線間的距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 張掖2025年甘肅張掖市臨澤縣教育系統(tǒng)引進人才20人筆試歷年參考題庫附帶答案詳解
- 2025年度金融服務(wù):企業(yè)融資貸款合同3篇
- 2025年度環(huán)保設(shè)施施工合同書2篇
- 南京江蘇南京醫(yī)科大學馬克思主義學院招聘筆試歷年參考題庫附帶答案詳解
- 十堰2024年湖北丹江口市大學生鄉(xiāng)村醫(yī)生專項招聘3人筆試歷年參考題庫附帶答案詳解
- 2024年觸摸屏及嵌入式控制系統(tǒng)項目可行性研究報告
- 上海2024年上海市金山區(qū)行政事業(yè)國有資產(chǎn)管理中心招聘筆試歷年參考題庫附帶答案詳解
- 2025年度金融機構(gòu)外匯借款合同范本(含違約責任)6篇
- 2025年廣西梧州住房公積金管理中心招聘歷年高頻重點提升(共500題)附帶答案詳解
- 2025年廣西桂林市國土資源執(zhí)法監(jiān)察支隊編外人員招聘2人歷年高頻重點提升(共500題)附帶答案詳解
- 鷓鴣山隧道瓦斯地段專項施工方案
- HG∕T 2058.1-2016 搪玻璃溫度計套
- 九宮數(shù)獨200題(附答案全)
- 泌尿科一科一品匯報課件
- 白銅錫電鍍工藝
- 拜耳法氧化鋁生產(chǎn)工藝
- 2024年南京信息職業(yè)技術(shù)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 部編版二年級下冊道德與法治第二單元《我們好好玩》全部教案
- 幼兒園利劍護蕾專項行動工作方案總結(jié)與展望
- 合同信息管理方案模板范文
- 2024年大唐云南發(fā)電有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論