上海浦東第四教育署重點達標(biāo)名校中考數(shù)學(xué)仿真試卷及答案解析_第1頁
上海浦東第四教育署重點達標(biāo)名校中考數(shù)學(xué)仿真試卷及答案解析_第2頁
上海浦東第四教育署重點達標(biāo)名校中考數(shù)學(xué)仿真試卷及答案解析_第3頁
上海浦東第四教育署重點達標(biāo)名校中考數(shù)學(xué)仿真試卷及答案解析_第4頁
上海浦東第四教育署重點達標(biāo)名校中考數(shù)學(xué)仿真試卷及答案解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

上海浦東第四教育署重點達標(biāo)名校中考數(shù)學(xué)仿真試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某中學(xué)為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學(xué)類圖書平均每本書價格的1.2倍.已知學(xué)校用12000元購買文學(xué)類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學(xué)校購買文學(xué)類圖書平均每本書的價格是多少元?設(shè)學(xué)校購買文學(xué)類圖書平均每本書的價格是x元,則下面所列方程中正確的是()A. B.C. D.2.某射擊選手10次射擊成績統(tǒng)計結(jié)果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、103.一、單選題點P(2,﹣1)關(guān)于原點對稱的點P′的坐標(biāo)是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)4.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.5.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值26.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.7.用教材中的計算器依次按鍵如下,顯示的結(jié)果在數(shù)軸上對應(yīng)點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B8.下列運算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a9.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.110.如圖,某計算機中有、、三個按鍵,以下是這三個按鍵的功能.(1).:將熒幕顯示的數(shù)變成它的正平方根,例如:熒幕顯示的數(shù)為49時,按下后會變成1.(2).:將熒幕顯示的數(shù)變成它的倒數(shù),例如:熒幕顯示的數(shù)為25時,按下后會變成0.2.(3).:將熒幕顯示的數(shù)變成它的平方,例如:熒幕顯示的數(shù)為6時,按下后會變成3.若熒幕顯示的數(shù)為100時,小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當(dāng)他按了第100下后熒幕顯示的數(shù)是多少()A.0.01 B.0.1 C.10 D.10011.如圖所示的幾何體的俯視圖是()A. B. C. D.12.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.14.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是.15.如圖是我市某連續(xù)7天的最高氣溫與最低氣溫的變化圖,根據(jù)圖中信息可知,這7天中最大的日溫差是℃.16.反比例函數(shù)y=的圖像經(jīng)過點(2,4),則k的值等于__________.17.不等式組的解是____.18.若+(y﹣2018)2=0,則x﹣2+y0=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,?ABCD的對角線AC,BD相交于點O.E,F(xiàn)是AC上的兩點,并且AE=CF,連接DE,BF.(1)求證:△DOE≌△BOF;(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.20.(6分)對于平面直角坐標(biāo)系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標(biāo)為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.21.(6分)如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.(1)求證:AE=BF;(2)連接GB,EF,求證:GB∥EF;(3)若AE=1,EB=2,求DG的長.22.(8分)在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥EC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.如圖1,求證:∠ANE=∠DCE;如圖2,當(dāng)點N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.23.(8分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請?zhí)砑右粋€條件使四邊形BEDF為菱形.24.(10分)綜合與實踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動點引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關(guān)于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點E在邊BC上運動時,(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).25.(10分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學(xué)生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?26.(12分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設(shè)拋物線的對稱軸與x軸交于點P,D為第四象限內(nèi)的一點,若△CPD為等腰直角三角形,求出D點坐標(biāo).27.(12分)知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

首先設(shè)文學(xué)類圖書平均每本的價格為x元,則科普類圖書平均每本的價格為1.2x元,根據(jù)題意可得等量關(guān)系:學(xué)校用12000元購買文學(xué)類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,根據(jù)等量關(guān)系列出方程,【詳解】設(shè)學(xué)校購買文學(xué)類圖書平均每本書的價格是x元,可得:故選B.【點睛】此題主要考查了分式方程的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.2、B【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、A【解析】

根據(jù)“關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關(guān)于原點對稱的點的坐標(biāo)是(-2,1).故選A.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).4、D【解析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.5、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標(biāo)分別為:x1,x2,

由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.6、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、A【解析】試題分析:在計算器上依次按鍵轉(zhuǎn)化為算式為﹣=-1.414…;計算可得結(jié)果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸8、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.9、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).10、B【解析】

根據(jù)題中的按鍵順序確定出顯示的數(shù)即可.【詳解】解:根據(jù)題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【點睛】此題考查了計算器﹣數(shù)的平方,弄清按鍵順序是解本題的關(guān)鍵.11、D【解析】試題分析:根據(jù)俯視圖的作法即可得出結(jié)論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.12、D【解析】

各項中每項計算得到結(jié)果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)二次函數(shù)的圖象和性質(zhì)結(jié)合三角形面積公式求解.【詳解】解:設(shè)點橫坐標(biāo)為,則點縱坐標(biāo)為,點B的縱坐標(biāo)為,∵BE∥x軸,∴點F縱坐標(biāo)為,∵點F是拋物線上的點,∴點F橫坐標(biāo)為,∵軸,∴點D縱坐標(biāo)為,∵點D是拋物線上的點,∴點D橫坐標(biāo)為,,故答案為.【點睛】此題重點考查學(xué)生對二次函數(shù)的圖象和性質(zhì)的應(yīng)用能力,熟練掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.14、2【解析】試題分析:分析前三個正方形可知,規(guī)律為右上和左下兩個數(shù)的積減左上的數(shù)等于右下的數(shù),且左上,左下,右上三個數(shù)是相鄰的偶數(shù).因此,圖中陰影部分的兩個數(shù)分別是左下是12,右上是1.解:分析可得圖中陰影部分的兩個數(shù)分別是左下是12,右上是1,則m=12×1﹣10=2.故答案為2.考點:規(guī)律型:數(shù)字的變化類.15、11.【解析】試題解析:∵由折線統(tǒng)計圖可知,周一的日溫差=8℃+1℃=9℃;周二的日溫差=7℃+1℃=8℃;周三的日溫差=8℃+1℃=9℃;周四的日溫差=9℃;周五的日溫差=13℃﹣5℃=8℃;周六的日溫差=15℃﹣71℃=8℃;周日的日溫差=16℃﹣5℃=11℃,∴這7天中最大的日溫差是11℃.考點:1.有理數(shù)大小比較;2.有理數(shù)的減法.16、1【解析】解:∵點(2,4)在反比例函數(shù)的圖象上,∴,即k=1.故答案為1.點睛:本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,即反比例函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式.17、【解析】

分別求出各不等式的解集,再求出其公共解集即可.【詳解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式組的解集是1<x≤1,

故答案是:1<x≤1.【點睛】考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).18、1【解析】

直接利用偶次方的性質(zhì)以及二次根式的性質(zhì)分別化簡得出答案.【詳解】解:∵+(y﹣1018)1=0,∴x﹣1=0,y﹣1018=0,解得:x=1,y=1018,則x﹣1+y0=1﹣1+10180=1+1=1.故答案為:1.【點睛】此題主要考查了非負(fù)數(shù)的性質(zhì),正確得出x,y的值是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(2)證明見解析;(2)四邊形EBFD是矩形.理由見解析.【解析】分析:(1)根據(jù)SAS即可證明;(2)首先證明四邊形EBFD是平行四邊形,再根據(jù)對角線相等的平行四邊形是矩形即可證明;【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)結(jié)論:四邊形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四邊形EBFD是平行四邊形,∵BD=EF,∴四邊形EBFD是矩形.點睛:本題考查平行四邊形的性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.20、(1)①6,②2或4,③1<m<4;(2)或.【解析】

(1)①根據(jù)“折線距離”的定義直接列式計算;②根據(jù)“折線距離”的定義列出方程,求解即可;③根據(jù)“折線距離”的定義列出式子,可知其幾何意義是數(shù)軸上表示數(shù)m的點到表示數(shù)3的點的距離與到表示數(shù)2的點的距離之和小于3.(2)由題意可知,根據(jù)圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數(shù)軸上表示數(shù)m的點到表示數(shù)3的點的距離與到表示數(shù)2的點的距離之和小于3,所以1<m<4(2)設(shè)E(x,y),則,如圖,若點E在⊙F上,則.【點睛】本題主要考查坐標(biāo)與圖形,正確理解新定義及其幾何意義,利用數(shù)形結(jié)合的思想思考問題是解題關(guān)鍵.21、(1)詳見解析;(2)詳見解析;(3)910【解析】(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=12(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質(zhì)得到一對同位角相等,利用同位角相等兩直線平行即可得證;(3)由全等三角形對應(yīng)邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.(1)證明:連接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB為圓O的直徑,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)證明:連接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根據(jù)勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=22∵△DEF為等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF∵EF=5,∴DE=5×22∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE∴102?GE=2,即GE=2則GD=GE+ED=91022、(1)見解析;(2);(1)DE的長分別為或1.【解析】

(1)由比例中項知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當(dāng)△AEC與以點E、M、N為頂點所組成的三角形相似時①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點E作EH⊥AC,垂足為點H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設(shè)DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長分別為或1.【點睛】本題是相似三角形的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點.23、見解析【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得AB∥DC,OB=OD,由平行線的性質(zhì)可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性質(zhì)可得EO=FO,根據(jù)對角線互相平分的四邊形是平行四邊形即可判定四邊形BEDF是平行四邊形;(2)添加EF⊥BD(本題添加的條件不唯一),根據(jù)對角線互相垂直的平行四邊形為菱形即可判定平行四邊形BEDF為菱形.【詳解】(1)∵四邊形ABCD是平行四邊形,O是BD的中點,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)EF⊥BD.∵四邊形BEDF是平行四邊形,∵EF⊥BD,∴平行四邊形BEDF是菱形.【點睛】本題考查了平行四邊形的性質(zhì)與判定、菱形的判定,熟知平行四邊形的性質(zhì)與判定及菱形的判定方法是解決問題的關(guān)鍵.24、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關(guān)于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點D關(guān)于直線AE的對稱點為點F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點D關(guān)于直線AE的對稱點為點F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點D與點F關(guān)于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).25、0.34【解析】

(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論