廣東省珠海市第十一中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第1頁
廣東省珠海市第十一中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第2頁
廣東省珠海市第十一中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第3頁
廣東省珠海市第十一中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第4頁
廣東省珠海市第十一中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省珠海市第十一中學(xué)中考數(shù)學(xué)全真模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點(diǎn),若BC=2,則EF的長度為()A.12B.1C.322.已知正比例函數(shù)的圖象經(jīng)過點(diǎn),則此正比例函數(shù)的關(guān)系式為().A. B. C. D.3.如圖,將一張三角形紙片的一角折疊,使點(diǎn)落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.4.如圖是由四個(gè)相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.5.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,66.的倒數(shù)是()A. B.3 C. D.7.若⊙O的半徑為5cm,OA=4cm,則點(diǎn)A與⊙O的位置關(guān)系是()A.點(diǎn)A在⊙O內(nèi) B.點(diǎn)A在⊙O上 C.點(diǎn)A在⊙O外 D.內(nèi)含8.如圖的幾何體是由五個(gè)小正方體組合而成的,則這個(gè)幾何體的左視圖是()A. B.C. D.9.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?0.已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個(gè),黑球有n個(gè).隨機(jī)地從袋中摸出一個(gè)球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個(gè)球,經(jīng)過如此大量重復(fù)試驗(yàn),發(fā)現(xiàn)摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為()A.20 B.30 C.40 D.50二、填空題(共7小題,每小題3分,滿分21分)11.如圖,D,E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.12.如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長為半徑畫弧交x軸于點(diǎn)A3,…,按照此做法進(jìn)行下去,點(diǎn)A8的坐標(biāo)為__________.13.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.14.如圖,已知,D、E分別是邊BA、CA延長線上的點(diǎn),且如果,,那么AE的長為______.15.若向北走5km記作﹣5km,則+10km的含義是_____.16.方程=的解是____.17.計(jì)算:﹣1﹣2=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.19.(5分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點(diǎn)E,AD的延長線與A'D'交于點(diǎn)F.(1)如圖①,當(dāng)α=60°時(shí),連接DD',求DD'和A'F的長;(2)如圖②,當(dāng)矩形A'B'CD'的頂點(diǎn)A'落在CD的延長線上時(shí),求EF的長;(3)如圖③,當(dāng)AE=EF時(shí),連接AC,CF,求AC?CF的值.20.(8分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對(duì)稱、旋轉(zhuǎn)等方法可以計(jì)算等分正多邊形面積的方案.(1)請(qǐng)聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個(gè)、3個(gè)、4個(gè)全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊AB、BC上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點(diǎn)P為邊CA延長線上一點(diǎn),點(diǎn)Q為邊AB延長線上一點(diǎn),點(diǎn)D為BC邊中點(diǎn),且∠PDQ=120°,若PA=x,請(qǐng)用含x的代數(shù)式表示△BDQ的面積S△BDQ.21.(10分)華聯(lián)超市準(zhǔn)備代銷一款運(yùn)動(dòng)鞋,每雙的成本是170元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是200元時(shí),每天的銷售量是40雙,而銷售單價(jià)每降低1元,每天就可多售出5雙,設(shè)每雙降低x元(x為正整數(shù)),每天的銷售利潤為y元.求y與x的函數(shù)關(guān)系式;每雙運(yùn)動(dòng)鞋的售價(jià)定為多少元時(shí),每天可獲得最大利潤?最大利潤是多少?22.(10分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點(diǎn)D,使AD=BC,作AD的垂直平分線,交AC邊于點(diǎn)F,交以AB為直徑的⊙O于G,H,設(shè)BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;(3)連結(jié)OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).23.(12分)已知關(guān)于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負(fù)數(shù).(1)求m的取值范圍;(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.24.(14分)一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.(1)求口袋中黃球的個(gè)數(shù);(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)題意求出AB的值,由D是AB中點(diǎn)求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點(diǎn),∴CD=12AB=12∵E,F分別為AC,AD的中點(diǎn),∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是三角形中位線定理,解題的關(guān)鍵是熟練的掌握三角形中位線定理.2、A【解析】

根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點(diǎn)睛】此類題目需靈活運(yùn)用待定系數(shù)法建立函數(shù)解析式,然后將點(diǎn)的坐標(biāo)代入解析式,利用方程解決問題.3、A【解析】

分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結(jié)論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點(diǎn)睛:本題考查了三角形外角的性質(zhì),熟練掌握三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和是關(guān)鍵.4、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個(gè)數(shù)依次為2,1,如圖所示:故選A.【點(diǎn)睛】本題考查了三視圖的知識(shí),正視圖是從物體的正面看得到的視圖.5、C【解析】

解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【點(diǎn)睛】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).6、A【解析】

解:的倒數(shù)是.故選A.【點(diǎn)睛】本題考查倒數(shù),掌握概念正確計(jì)算是解題關(guān)鍵.7、A【解析】

直接利用點(diǎn)與圓的位置關(guān)系進(jìn)而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.【點(diǎn)睛】此題主要考查了點(diǎn)與圓的位置關(guān)系,正確①點(diǎn)P在圓外?d>r,②點(diǎn)P在圓上?d=r,③點(diǎn)P在圓內(nèi)?d<r是解題關(guān)鍵.8、D【解析】

找到從左面看到的圖形即可.【詳解】從左面上看是D項(xiàng)的圖形.故選D.【點(diǎn)睛】本題考查三視圖的知識(shí),左視圖是從物體左面看到的視圖.9、C【解析】

根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.10、A【解析】分析:根據(jù)白球的頻率穩(wěn)定在0.4附近得到白球的概率約為0.4,根據(jù)白球個(gè)數(shù)確定出總個(gè)數(shù),進(jìn)而確定出黑球個(gè)數(shù)n.詳解:根據(jù)題意得:,

計(jì)算得出:n=20,

故選A.

點(diǎn)睛:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.二、填空題(共7小題,每小題3分,滿分21分)11、1:3【解析】根據(jù)相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據(jù)相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.12、(128,0)【解析】

∵點(diǎn)A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠xOB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點(diǎn)A2、A3…的坐標(biāo)規(guī)律,最后求出A8的坐標(biāo).【詳解】點(diǎn)坐標(biāo)為(1,0),

點(diǎn)的橫坐標(biāo)為1,且點(diǎn)在直線上

在中由勾股定理,得

,

在中,

.

.

.

.

故答案為.【點(diǎn)睛】本題是一道一次函數(shù)的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質(zhì),特別是所對(duì)的直角邊等于斜邊的一半的運(yùn)用,點(diǎn)的坐標(biāo)與函數(shù)圖象的關(guān)系.13、41【解析】

已知一元二次方程的根判別式為△=b2﹣4ac,代入計(jì)算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點(diǎn)睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關(guān)鍵.14、【解析】

由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計(jì)算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.15、向南走10km【解析】

分析:與北相反的方向是南,由題意,負(fù)數(shù)表示向北走,則正數(shù)就表示向南走,據(jù)此得出結(jié)論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點(diǎn)睛:本題考查對(duì)相反意義量的認(rèn)識(shí):在一對(duì)具有相反意義的量中,先規(guī)定一個(gè)為正數(shù),則另一個(gè)就要用負(fù)數(shù)表示.16、x=1【解析】

觀察可得方程最簡公分母為x(x?1),去分母,轉(zhuǎn)化為整式方程求解,結(jié)果要檢驗(yàn).【詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗(yàn):把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【點(diǎn)睛】解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程,具體方法是方程兩邊同時(shí)乘以最簡公分母,在此過程中有可能會(huì)產(chǎn)生增根,增根是轉(zhuǎn)化后整式的根,不是原方程的根,因此要注意檢驗(yàn).17、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.三、解答題(共7小題,滿分69分)18、證明見解析;(2)①9;②12.5.【解析】

(1)根據(jù)對(duì)角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點(diǎn)D是BC的中點(diǎn),∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當(dāng)∠APC=90°時(shí),四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當(dāng)AP的值為9時(shí),四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設(shè)BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當(dāng)PC=PB時(shí),四邊形PBEC是菱形,此時(shí)點(diǎn)P為AB的中點(diǎn),所以AP=12.5,∴當(dāng)AP的值為12.5時(shí),四邊形PBEC是菱形.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關(guān)鍵是掌握特殊圖形的判定以及重要的性質(zhì).19、(1)DD′=1,A′F=4﹣;(2);(1).【解析】

(1)①如圖①中,∵矩形ABCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.20、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因?yàn)閘=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因?yàn)镺M=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時(shí),OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個(gè)全等三角形,如圖2,連接外心和各頂點(diǎn)的線段可分割成3個(gè)全等三角形,如圖3,連接各邊的中點(diǎn)可分割成4個(gè)全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時(shí),OM定值最小,此時(shí)定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點(diǎn)睛】本題主要考查多邊形的綜合題,主要涉及的知識(shí)點(diǎn):全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運(yùn)用這些知識(shí)點(diǎn)是解此類綜合題的關(guān)鍵。21、(1)y=﹣5x2+110x+1200;(2)售價(jià)定為189元,利潤最大1805元【解析】

利潤等于(售價(jià)﹣成本)×銷售量,根據(jù)題意列出表達(dá)式,借助二次函數(shù)的性質(zhì)求最大值即可;【詳解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵拋物線開口向下,∴當(dāng)x=11時(shí),y有最大值1805,答:售價(jià)定為189元,利潤最大1805元;【點(diǎn)睛】本題考查實(shí)際應(yīng)用中利潤的求法,二次函數(shù)的應(yīng)用;能夠根據(jù)題意列出合理的表達(dá)式是解題的關(guān)鍵.22、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】

(1)根據(jù)線段的垂直平分線的性質(zhì)以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應(yīng)的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當(dāng)點(diǎn)D與O重合時(shí),△AOF是等腰三角形,此時(shí)AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當(dāng)AF=AO時(shí),∵AB==,∴OA=,∵AF==,∴=,解得x=4(負(fù)根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),設(shè)AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負(fù)根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論