




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江佳木斯市第一中學(xué)2024年高一下數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.正方體中,則異面直線與所成的角是A.30° B.45° C.60° D.90°2.阿波羅尼斯是古希臘著名的數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時期數(shù)學(xué)三巨匠,他對幾何問題有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指出的是:已知動點M與兩定點A,B的距離之比為,那么點M的軌跡是一個圓,稱之為阿波羅尼斯圓.請解答下面問題:已知,,若直線上存在點M滿足,則實數(shù)c的取值范圍是()A. B. C. D.3.若,,則等于()A. B. C. D.4.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,b=c,且滿足=,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2OB=2,則平面四邊形OACB面積的最大值是()A. B. C.3 D.5.已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于A.-10 B.-8 C.-6 D.-46.如圖,中,,,用表示,正確的是()A. B.C. D.7.不等式的解集為A. B. C. D.8.在正方體中,與所成的角為()A.30° B.90° C.60° D.120°9.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能10.在區(qū)間[–1,1]上任取兩個數(shù)x和y,則x2+y2≥1的概率為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是內(nèi)的一點,,,則_______;若,則_______.12.已知向量,,若,則__________.13.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.14.已知橢圓的右焦點為,過點作圓的切線,若兩條切線互相垂直,則_____________.15.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.16.在平面直角坐標系中,圓的方程為.若直線上存在一點,使過所作的圓的兩條切線相互垂直,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱中,,D為AB上一點,且平面.(1)求證:;(2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,,求三樓柱的體積.18.已知函數(shù)。(1)若,求不等式的解集;(2)若,且,求的最小值。19.已知數(shù)列的前項和為.(Ⅰ)當時,求數(shù)列的通項公式;(Ⅱ)當時,令,求數(shù)列的前項和.20.如圖,在四棱錐中,底面為菱形,、、分別是棱、、的中點,且平面.(1)求證:平面;(2)求證:平面.21.已知公差不為零的等差數(shù)列中,,且成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】連接A,易知:平行A,∴異面直線與所成的角即異面直線與A所成的角,連接,易知△為等邊三角形,
∴異面直線與所成的角是60°故選C2、B【解析】
根據(jù)題意設(shè)點M的坐標為,利用兩點間的距離公式可得到關(guān)于的一元二次方程,只需即可求解.【詳解】點M在直線上,不妨設(shè)點M的坐標為,由直線上存在點M滿足,則,整理可得,,所以實數(shù)c的取值范圍為.故選:B【點睛】本題考查了兩點間的距離公式、一元二次不等式的解法,考查了學(xué)生分析問題解決問題的能力,屬于中檔題.3、C【解析】
直接用向量的坐標運算即可得到答案.【詳解】由,.故選:C【點睛】本題考查向量的坐標運算,屬于基礎(chǔ)題.4、A【解析】
根據(jù)正弦和角公式化簡得是正三角形,再將平面四邊形OACB面積表示成的三角函數(shù),利用三角函數(shù)求得最值.【詳解】由已知得:即所以即又因為所以所以又因為所以是等邊三角形.所以在中,由余弦定理得且因為平面四邊形OACB面積為當時,有最大值,此時平面四邊形OACB面積有最大值,故選A.【點睛】本題關(guān)鍵在于把所求面積表示成角的三角函數(shù),屬于難度題.5、C【解析】試題分析:有題可知,a1,a3,a4成等比數(shù)列,則有,又因為{an}是等差數(shù)列,故有,公差d=2,解得;考點:?等差數(shù)列通項公式?等比數(shù)列性質(zhì)6、C【解析】
由平面向量基本定理和三角形法則求解即可【詳解】由,可得,則,即.故選C.【點睛】本題考查平面向量基本定理和三角形法則,熟記定理和性質(zhì)是解題關(guān)鍵,是基礎(chǔ)題7、D【解析】
把不等式化為,即可求解不等式的解集,得到答案.【詳解】由題意,不等式可化為,解得或,即不等式的解集為,故選D.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解析】
把異面直線與所成的角,轉(zhuǎn)化為相交直線與所成的角,利用為正三角形,即可求解.【詳解】連結(jié),則,所以相交直線與所成的角,即為異面直線與所成的角,連結(jié),則是正三角形,所以,即異面直線與所成的角,故選C.【點睛】本題主要考查了空間中異面直線及其所成角的求法,其中根據(jù)異面直線的定義,把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、B【解析】
由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.10、A【解析】由題意知,所有的基本事件構(gòu)成的平面區(qū)域為,其面積為.設(shè)“在區(qū)間[-1,1]上任選兩個數(shù),則”為事件A,則事件A包含的基本事件構(gòu)成的平面區(qū)域為,其面積為.由幾何概型概率公式可得所求概率為.選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
對式子兩邊平方,再利用向量的數(shù)量積運算即可;式子兩邊分別與向量,進行數(shù)量積運算,得到關(guān)于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點睛】本題考查向量數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意將向量等式轉(zhuǎn)化為數(shù)量關(guān)系的方法.12、1【解析】由,得.即.解得.13、【解析】
根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎(chǔ)題.14、【解析】
首先分析直線與圓的位置關(guān)系,然后結(jié)合已知可判斷四邊形的形狀,得出的比值,最后得到答案.【詳解】設(shè)切點為,根據(jù)已知兩切線垂直,四邊形是正方形,,根據(jù),可得.故填:.【點睛】本題考查了直線與圓的幾何性質(zhì),以及橢圓的性質(zhì),考查了轉(zhuǎn)化與化歸的能力,屬于基礎(chǔ)題型.15、2【解析】
由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】試題分析:記兩個切點為,則由于,因此四邊形是正方形,,圓標準方程為,,,于是圓心直線的距離不大于,,解得.考點:直線和圓的位置關(guān)系.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2)【解析】
(1)連接交于點,連接,利用線面平行的性質(zhì)定理可得,從而可得為的中點,進而可證出(2)利用面面垂直的性質(zhì)定理可得平面,從而可得三棱柱為直三棱柱,在中,根據(jù)等腰三角形的性質(zhì)可得,進而可得棱柱的高為,利用柱體的體積公式即可求解.【詳解】(1)連接交于點,連接,如圖:由平面,且平面平面,所以,由為的中點,所以為的中點,又,(2)由四邊形是矩形,且平面平面ABC,所以平面,即三棱柱為直三棱柱,在中,,,,所以,因為直線與平面ABC所成角的正切值等于2,在中,,所以..【點睛】本題考查了線面平行的性質(zhì)定理、面面垂直的性質(zhì)定理,同時考查了線面角以及柱體的體積公式,屬于基礎(chǔ)題.18、(1)答案不唯一,具體見解析(2)【解析】
(1)由,對分類討論,判斷與的大小,確定不等式的解集.(2)利用把用表示,代入表示為的函數(shù),利用基本不等式可求.【詳解】解:(1)因為,所以,由,得,即,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為;(2)因為,由已知,可得,∴,∵,∴,∴,當且僅當時取等號,所以的最小值為?!军c睛】本題考查一元二次不等式的解法,基本不等式的應(yīng)用,考查分類討論的思想,運算求解能力,屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用的方法,進行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化簡得,然后利用裂項求和,求出數(shù)列的前項和【詳解】解:(Ⅰ)數(shù)列的前項和為①.當時,,當時,②,①﹣②得:,(首相不符合通項),所以:(Ⅱ)當時,①,當時,②,①﹣②得:,所以:令,所以:,則:【點睛】本題考查求數(shù)列通項的求法的應(yīng)用,以及利用裂項求和法進行求和,屬于基礎(chǔ)題20、(1)見解析;(2)見解析【解析】
(1)取中點,連接,,得,利用直線與平面平行的判定定理證明平面.(2)連結(jié),由已知條件得,由平面,得,利用直線與平面垂直的判定定理證明平面.【詳解】(1)取中點,連接,,∵、分別是棱、的中點,∴,且.∵在菱形中,是的中點,∴,且,∴且,∴為平行四邊形.∴.∵平面,平面,∴平面.(2)連接,∵是菱形,∴,∵,分別是棱、的中點,∴,∴,∵平面,平面,∴,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省南充市2025年中考英語真題附答案
- 2025年中國顆粒積木行業(yè)市場全景分析及前景機遇研判報告
- 2025年中國模塊電源行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 2025年中國馬飼料市場運行態(tài)勢及行業(yè)發(fā)展前景預(yù)測報告
- 泌尿外科??浦R
- 細化培訓(xùn)課件
- 倉庫作業(yè)培訓(xùn)課件
- 2025年 重慶兩江新區(qū)雁啟幼兒園招聘考試筆試試題附答案
- 2025-2031年中國農(nóng)村網(wǎng)購行業(yè)市場全景監(jiān)測及投資戰(zhàn)略咨詢報告
- 2025年中國烘手器市場運行態(tài)勢及行業(yè)發(fā)展前景預(yù)測報告
- 高考志愿填報模板,一張表格輕松報志愿
- 術(shù)后早期炎癥性腸梗阻
- 醫(yī)療美容病歷范本(試行)(適用于民營醫(yī)療美容機構(gòu))
- 26M3、1700℃氧化鋁制品高溫梭式窯設(shè)計-2全解
- 110kv油浸電力變壓器基礎(chǔ)知識介紹
- 8.3平面及其方程教案
- GA∕T 743-2016 閃光警告信號燈
- 亳州基準地價成果資料
- 二年級《時間單位換算口算題(共100道)》專題練習(xí)訓(xùn)練
- 空壓機保修手冊
- 工業(yè)機器人編程與實操期末精彩試題
評論
0/150
提交評論