2024屆江西省吉安市四校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆江西省吉安市四校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆江西省吉安市四校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆江西省吉安市四校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆江西省吉安市四校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江西省吉安市四校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,正方體ABCD-A1B1C1D1的棱長為2,E是棱AB的中點(diǎn),F(xiàn)是側(cè)面AA1D1D內(nèi)一點(diǎn),若EF∥平面BB1D1D,則EF長度的范圍為()A. B. C. D.2.已知等比數(shù)列的公比為正數(shù),且,則()A. B. C. D.3.已知圓C的半徑為2,在圓內(nèi)隨機(jī)取一點(diǎn)P,并以P為中點(diǎn)作弦AB,則弦長的概率為A. B. C. D.4.直線2x+y+4=0與圓x+22+y+32=5A.255 B.4555.圖1是我國古代數(shù)學(xué)家趙爽創(chuàng)制的一幅“勾股圓方圖”(又稱“趙爽弦圖”),它是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形.受其啟發(fā),某同學(xué)設(shè)計(jì)了一個(gè)圖形,它是由三個(gè)全等的鈍角三角形與中間一個(gè)小正三角形拼成一個(gè)大正三角形,如圖2所示,若,,則線段的長為()A.3 B.3.5 C.4 D.4.56.已知函數(shù),在中,內(nèi)角的對(duì)邊分別是,內(nèi)角滿足,若,則的周長的取值范圍為()A. B. C. D.7.若直線與圓有公共點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.在數(shù)列中,若,,,設(shè)數(shù)列滿足,則的前項(xiàng)和為()A. B. C. D.9.已知全集,集合,,則()A. B.C. D.10.已知點(diǎn),,則直線的斜率是()A. B. C.5 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.過點(diǎn)且與直線l:垂直的直線方程為______.(請(qǐng)用一般式表示)12.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的最小值為______.13.已知一組數(shù)據(jù)6,7,8,8,9,10,則該組數(shù)據(jù)的方差是____.14.已知向量a=1,2,b=2,-2,c=15.若是等比數(shù)列,,,則________16.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖是某神奇“黃金數(shù)學(xué)草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠(yuǎn).(1)求第3階段“黃金數(shù)學(xué)草”的高度;(2)求第13階段“黃金數(shù)學(xué)草”的高度;18.已知向量,,,設(shè)函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.19.已知函數(shù)f(x)=sin22x-π4(1)求當(dāng)t=1時(shí),求fπ(2)求gt(3)當(dāng)-12≤t≤1時(shí),要使關(guān)于t的方程g(t)=20.已知扇形的半徑為3,面積為9,則該扇形的弧長為___________.21.如圖所示,是一個(gè)矩形花壇,其中米,米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求:在上,在上,對(duì)角線過點(diǎn),且矩形的面積小于150平方米.(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當(dāng)?shù)拈L度是多少時(shí),矩形的面積最小?并求最小面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

過作,交于點(diǎn),交于,根據(jù)線面垂直關(guān)系和勾股定理可知;由平面可證得面面平行關(guān)系,利用面面平行性質(zhì)可證得為中點(diǎn),從而得到最小值為重合,最大值為重合,計(jì)算可得結(jié)果.【詳解】過作,交于點(diǎn),交于,則底面平面,平面,平面平面,又平面平面又平面平面,平面為中點(diǎn)為中點(diǎn),則為中點(diǎn)即在線段上,,則線段長度的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查立體幾何中線段長度取值范圍的求解,關(guān)鍵是能夠確定動(dòng)點(diǎn)的具體位置,從而找到臨界狀態(tài);本題涉及到立體幾何中線面平行的性質(zhì)、面面平行的判定與性質(zhì)等定理的應(yīng)用.2、D【解析】設(shè)公比為,由已知得,即,又因?yàn)榈缺葦?shù)列的公比為正數(shù),所以,故,故選D.3、B【解析】

先求出臨界狀態(tài)時(shí)點(diǎn)P的位置,若,則點(diǎn)P與點(diǎn)C的距離必須大于或等于臨界狀態(tài)時(shí)與點(diǎn)C的距離,再根據(jù)幾何概型的概率計(jì)算公式求解.【詳解】如圖所示:當(dāng)時(shí),此時(shí),若,則點(diǎn)P必須位于以點(diǎn)C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點(diǎn)睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時(shí)的情況,再判斷滿足條件的區(qū)域.4、C【解析】

先求出圓心到直線的距離d,然后根據(jù)圓的弦長公式l=2r【詳解】由題意得,圓x+22+y+32=5圓心-2,-3到直線2x+y+4=0的距離為d=|2×(-2)-3+4|∴MN=2故選C.【點(diǎn)睛】求圓的弦長有兩種方法:一是求出直線和圓的交點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式求解;二是利用幾何法求解,即求出圓心到直線的距離,在由半徑、弦心距和半弦長構(gòu)成的直角三角形中運(yùn)用勾股定理求解,此時(shí)不要忘了求出的是半弦長.在具體的求解中一般利用幾何法,以減少運(yùn)算、增強(qiáng)解題的直觀性.5、A【解析】

設(shè),可得,求得,在中,運(yùn)用余弦定理,解方程可得所求值.【詳解】設(shè),可得,且,在中,可得,即為,化為,解得舍去),故選.【點(diǎn)睛】本題考查三角形的余弦定理,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.6、B【解析】

首先根據(jù)降冪公式以及輔助角公式化簡,把帶入利用余弦定理以及基本不等式即可.【詳解】由題意得,為三角形內(nèi)角所以,所以,因?yàn)椋?,,?dāng)且僅當(dāng)時(shí)取等號(hào),因?yàn)?,所以,所以選擇B【點(diǎn)睛】本題主要考查了三角函數(shù)的化簡,以及余弦定理和基本不等式.在化簡的過程中常用到的公式有輔助角、二倍角、兩角和與差的正弦、余弦等.屬于中等題.7、C【解析】由題意得圓心為,半徑為.圓心到直線的距離為,由直線與圓有公共點(diǎn)可得,即,解得.∴實(shí)數(shù)a取值范圍是.選C.8、D【解析】

利用等差中項(xiàng)法得知數(shù)列為等差數(shù)列,根據(jù)已知條件可求出等差數(shù)列的首項(xiàng)與公差,由此可得出數(shù)列的通項(xiàng)公式,利用對(duì)數(shù)與指數(shù)的互化可得出數(shù)列的通項(xiàng)公式,并得知數(shù)列為等比數(shù)列,利用等比數(shù)列前項(xiàng)和公式可求出.【詳解】由可得,可知是首項(xiàng)為,公差為的等差數(shù)列,所以,即.由,可得,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,數(shù)列的前項(xiàng)和為,故選D.【點(diǎn)睛】本題考查利用等差中項(xiàng)法判斷等差數(shù)列,同時(shí)也考查了對(duì)數(shù)與指數(shù)的互化以及等比數(shù)列的求和公式,解題的關(guān)鍵在于結(jié)合已知條件確定數(shù)列的類型,并求出數(shù)列的通項(xiàng)公式,考查運(yùn)算求解能力,屬于中等題.9、A【解析】

本題根據(jù)交集、補(bǔ)集的定義可得.容易題,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.【詳解】,則【點(diǎn)睛】易于理解集補(bǔ)集的概念、交集概念有誤.10、D【解析】

根據(jù)直線的斜率公式,準(zhǔn)確計(jì)算,即可求解,得到答案.【詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【點(diǎn)睛】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

與直線垂直的直線方程可設(shè)為,再將點(diǎn)的坐標(biāo)代入運(yùn)算即可得解.【詳解】解:與直線l:垂直的直線方程可設(shè)為,又該直線過點(diǎn),則,則,即點(diǎn)且與直線l:垂直的直線方程為,故答案為:.【點(diǎn)睛】本題考查了與已知直線垂直的直線方程的求法,屬基礎(chǔ)題.12、【解析】

用基本量法求出數(shù)列的通項(xiàng)公式,由通項(xiàng)公式可得取最小值時(shí)的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和的最值.首項(xiàng)為負(fù)且遞增的等差數(shù)列,滿足的最大的使得最小,首項(xiàng)為正且遞減的等差數(shù)列,滿足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識(shí)求得最值.13、.【解析】

由題意首先求得平均數(shù),然后求解方差即可.【詳解】由題意,該組數(shù)據(jù)的平均數(shù)為,所以該組數(shù)據(jù)的方差是.【點(diǎn)睛】本題主要考查方差的計(jì)算公式,屬于基礎(chǔ)題.14、1【解析】

由兩向量共線的坐標(biāo)關(guān)系計(jì)算即可.【詳解】由題可得2∵c//∴4λ-2=0故答案為1【點(diǎn)睛】本題主要考查向量的坐標(biāo)運(yùn)算,以及兩向量共線的坐標(biāo)關(guān)系,屬于基礎(chǔ)題.15、【解析】

根據(jù)等比數(shù)列的通項(xiàng)公式求解公比再求和即可.【詳解】設(shè)公比為,則.故故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎(chǔ)題型.16、【解析】

由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)示意圖,計(jì)算出第階段、第階段生長的高度,即可求解出第階段“黃金數(shù)學(xué)草”的高度;(2)考慮第偶數(shù)階段、第奇數(shù)階段“黃金數(shù)學(xué)草”高度的生長量之間的關(guān)系,構(gòu)造數(shù)列,利用數(shù)列求和完成第階段“黃金數(shù)學(xué)草”的高度的計(jì)算.【詳解】(1)因?yàn)榈谝浑A段:,所以第階段生長:,第階段的生長:,所以第階段“黃金數(shù)學(xué)草”的高度為:;(2)設(shè)第個(gè)階段生長的“黃金數(shù)學(xué)草”的高度為,則第個(gè)階段生長的“黃金數(shù)學(xué)草”的高度為,第階段“黃金數(shù)學(xué)草”的高度為,所以,所以數(shù)列按奇偶性分別成公比為等比數(shù)列,所以.所以第階段“黃金數(shù)學(xué)草”的高度為:.【點(diǎn)睛】本題考查等比數(shù)列以及等比數(shù)列的前項(xiàng)和的實(shí)際應(yīng)用,難度較難.處理數(shù)列的實(shí)際背景問題,第一步要能從實(shí)際背景中分離出數(shù)列的模型,然后根據(jù)給定的條件處理對(duì)應(yīng)的數(shù)列計(jì)算問題,這對(duì)分析問題的能力要求很高.18、(1)(2)時(shí),取最小值;時(shí),取最大值1.【解析】

試題分析:(1)根據(jù)向量數(shù)量積、二倍角公式及配角公式得,再根據(jù)正弦函數(shù)性質(zhì)得.(2)先根據(jù)得,,再根據(jù)正弦函數(shù)性質(zhì)得最大值和最小值.試題解析:(1),最小正周期為.(2)當(dāng)時(shí),,由圖象可知時(shí)單調(diào)遞增,時(shí)單調(diào)遞減,所以當(dāng),即時(shí),取最小值;當(dāng),即時(shí),取最大值1.19、(1)-4(2)g(t)=t2【解析】

(1)直接代入計(jì)算得解;(2)先求出sin(2x-π4)∈[-12,1]【詳解】(1)當(dāng)t=1時(shí),f(x)=sin22x-(2)因?yàn)閤∈[π24,πf(x)=[sin(2x-當(dāng)t<-12時(shí),則當(dāng)sin當(dāng)-12≤t≤1時(shí),則當(dāng)當(dāng)t>1時(shí),則當(dāng)sin(2x-π故g(t)=(3)當(dāng)-12≤t≤1時(shí),g(t)=-6t+1,令欲使g(t)=kt2-9有一個(gè)實(shí)根,則只需h(-解得k≤-2或所以k的范圍:(-【點(diǎn)睛】本題主要考查三角函數(shù)的范圍的計(jì)算,考查二次函數(shù)的最值的求法和方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論