2025屆江蘇省沭陽(yáng)縣修遠(yuǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2025屆江蘇省沭陽(yáng)縣修遠(yuǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2025屆江蘇省沭陽(yáng)縣修遠(yuǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2025屆江蘇省沭陽(yáng)縣修遠(yuǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2025屆江蘇省沭陽(yáng)縣修遠(yuǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆江蘇省沭陽(yáng)縣修遠(yuǎn)中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)等比數(shù)列的公比為,其前項(xiàng)和為,前項(xiàng)之積為,并且滿足條件:,,,下列結(jié)論中正確的是()A. B.C.是數(shù)列中的最大值 D.?dāng)?shù)列無(wú)最小值2.在中,若,則角的大小為()A. B. C. D.3.某同學(xué)用收集到的6組數(shù)據(jù)對(duì)(xi,yi)(i=1,2,3,4,5,6)制作成如圖所示的散點(diǎn)圖(點(diǎn)旁的數(shù)據(jù)為該點(diǎn)坐標(biāo)),并由最小二乘法計(jì)算得到回歸直線l的方程:x,相關(guān)指數(shù)為r.現(xiàn)給出以下3個(gè)結(jié)論:①r>0;②直線l恰好過(guò)點(diǎn)D;③1;其中正確的結(jié)論是A.①② B.①③C.②③ D.①②③4.設(shè),,均為正實(shí)數(shù),則三個(gè)數(shù),,()A.都大于2 B.都小于2C.至少有一個(gè)不大于2 D.至少有一個(gè)不小于25.要得到函數(shù)y=cos4x+πA.向左平移π3個(gè)單位長(zhǎng)度 B.向右平移πC.向左平移π12個(gè)單位長(zhǎng)度 D.向右平移π6.在中,,,,,則()A.或 B. C. D.7.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:“一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈多少?”現(xiàn)有類似問(wèn)題:一座5層塔共掛了363盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的3倍,則塔的底層共有燈A.81盞 B.112盞 C.162盞 D.243盞8.若不等式對(duì)一切恒成立,則實(shí)數(shù)的最大值為()A.0 B.2 C. D.39.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為()A. B. C. D.210.某校高二理(1)班學(xué)習(xí)興趣小組為了調(diào)查學(xué)生喜歡數(shù)學(xué)課的人數(shù)比例,設(shè)計(jì)了如下調(diào)查方法:(1)在本校中隨機(jī)抽取100名學(xué)生,并編號(hào)1,2,3,…,100;(2)在箱內(nèi)放置了兩個(gè)黃球和三個(gè)紅球,讓抽取到的100名學(xué)生分別從箱中隨機(jī)摸出一球,記住其顏色并放回;(3)請(qǐng)下列兩類學(xué)生站出來(lái),一是摸到黃球且編號(hào)數(shù)為奇數(shù)的學(xué)生,二是摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生。若共有32名學(xué)生站出來(lái),那么請(qǐng)用統(tǒng)計(jì)的知識(shí)估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是()A.80% B.85% C.90% D.92%二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊經(jīng)過(guò)點(diǎn),則的值為__________.12.若直線始終平分圓的周長(zhǎng),則的最小值為________13.已知數(shù)列的前n項(xiàng)和為,,且(),記(),若對(duì)恒成立,則的最小值為__.14.已知,,則______.15.如圖,為測(cè)量山高,選擇和另一座山的山頂為測(cè)量觀測(cè)點(diǎn),從點(diǎn)測(cè)得的仰角,點(diǎn)的仰角以及;從點(diǎn)測(cè)得;已知山高,則山高_(dá)_________.16.已知算式,在方框中填入兩個(gè)正整數(shù),使它們的乘積最大,則這兩個(gè)正整數(shù)之和是___.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.解方程:.18.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點(diǎn),是圓周上一點(diǎn),且,,.(1)求異面直線與所成角的余弦值;(2)設(shè)點(diǎn)是線段上的點(diǎn),且滿足,若直線平面,求實(shí)數(shù)的值.19.設(shè)數(shù)列的前n項(xiàng)和為,已知.(Ⅰ)求通項(xiàng);(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和.20.設(shè)遞增數(shù)列共有項(xiàng),定義集合,將集合中的數(shù)按從小到大排列得到數(shù)列;(1)若數(shù)列共有4項(xiàng),分別為,,,,寫出數(shù)列的各項(xiàng)的值;(2)設(shè)是公比為2的等比數(shù)列,且,若數(shù)列的所有項(xiàng)的和為4088,求和的值;(3)若,求證:為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng);21.在中,角所對(duì)的邊分別為,且.(1)求;(2)若,求的周長(zhǎng).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

根據(jù)題干條件可得到數(shù)列>1,0<q<1,數(shù)列之和越加越大,故A錯(cuò)誤;根據(jù)等比數(shù)列性質(zhì)得到進(jìn)而得到B正確;由前n項(xiàng)積的性質(zhì)得到是數(shù)列中的最大值;從開始后面的值越來(lái)越小,但是都是大于0的,故沒有最小值.【詳解】因?yàn)闂l件:,,,可知數(shù)列>1,0<q<1,根據(jù)等比數(shù)列的首項(xiàng)大于0,公比大于0,得到數(shù)列項(xiàng)均為正,故前n項(xiàng)和,項(xiàng)數(shù)越多,和越大,故A不正確;因?yàn)楦鶕?jù)數(shù)列性質(zhì)得到,故B不對(duì);前項(xiàng)之積為,所有大于等于1的項(xiàng)乘到一起,能夠取得最大值,故是數(shù)列中的最大值.數(shù)列無(wú)最小值,因?yàn)閺拈_始后面的值越來(lái)越小,但是都是大于0的,故沒有最小值.故D正確.故答案為D.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、遞推關(guān)系、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.2、D【解析】

由平面向量數(shù)量積的定義得出、與的等量關(guān)系,再由并代入、與的等量關(guān)系式求出的值,從而得出的大小.【詳解】,,,由正弦定理邊角互化思想得,,,同理得,,,則,解得,中至少有兩個(gè)銳角,且,,所以,,,因此,,故選D.【點(diǎn)睛】本題考查平面向量的數(shù)量積的計(jì)算,考查利用正弦定理、兩角和的正切公式求角的值,解題的關(guān)鍵就是利用三角恒等變換思想將問(wèn)題轉(zhuǎn)化為正切來(lái)進(jìn)行計(jì)算,屬于中等題.3、A【解析】由圖可知這些點(diǎn)分布在一條斜率大于零的直線附近,所以為正相關(guān),即相關(guān)系數(shù)因?yàn)樗曰貧w直線的方程必過(guò)點(diǎn),即直線恰好過(guò)點(diǎn);因?yàn)橹本€斜率接近于AD斜率,而,所以③錯(cuò)誤,綜上正確結(jié)論是①②,選A.4、D【解析】

由題意得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以至少有一個(gè)不小于,故選D.5、C【解析】

先化簡(jiǎn)得y=cos【詳解】因?yàn)閥=cos所以要得到函數(shù)y=cos4x+π3的圖像,只需將函數(shù)故選:C【點(diǎn)睛】本題主要考查三角函數(shù)的圖像的變換,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】

由三角形面積公式可得,進(jìn)而可得解.【詳解】在中,,,,,可得,所以,所以【點(diǎn)睛】本題主要考查了三角形的面積公式,屬于基礎(chǔ)題.7、D【解析】

從塔頂?shù)剿酌繉訜舯K數(shù)可構(gòu)成一個(gè)公比為3的等比數(shù)列,其和為1.由等比數(shù)列的知識(shí)可得.【詳解】從塔頂?shù)剿酌繉訜舯K數(shù)依次記為a1,a2,a3故選D.【點(diǎn)睛】本題考查等比數(shù)列的應(yīng)用,解題關(guān)鍵是根據(jù)實(shí)際意義構(gòu)造一個(gè)等比數(shù)列,把問(wèn)題轉(zhuǎn)化為等比數(shù)列的問(wèn)題.8、C【解析】

采用參變分離法對(duì)不等式變形,然后求解變形后的函數(shù)的值域,根據(jù)參數(shù)與新函數(shù)的關(guān)系求解參數(shù)最值.【詳解】因?yàn)椴坏仁綄?duì)一切恒成立,所以對(duì)一切,,即恒成立.令.易知在內(nèi)為增函數(shù).所以當(dāng)時(shí),,所以的最大值是.故選C.【點(diǎn)睛】常見的求解參數(shù)范圍的方法:(1)分類討論法(從臨界值、特殊值出發(fā));(2)參變分離法(考慮新函數(shù)與參數(shù)的關(guān)系).9、B【解析】

根據(jù)不等式組畫出可行域,數(shù)形結(jié)合解決問(wèn)題.【詳解】不等式組確定的可行域如下圖所示:因?yàn)榭苫?jiǎn)為與直線平行,且其在軸的截距與成正比關(guān)系,故當(dāng)且僅當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)和的交點(diǎn)時(shí),取得最小值,將點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)可得.故選:B.【點(diǎn)睛】本題考查常規(guī)線性規(guī)劃問(wèn)題,屬基礎(chǔ)題,注意數(shù)形結(jié)合即可.10、A【解析】

先分別計(jì)算號(hào)數(shù)為奇數(shù)的概率、摸到黃球的概率、摸到紅球的概率,從而可得摸到黃球且號(hào)數(shù)為奇數(shù)的學(xué)生,進(jìn)而可得摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生人數(shù),由此可得估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例.【詳解】解:由題意,號(hào)數(shù)為奇數(shù)的概率為0.5,摸到黃球的概率為,摸到紅球的概率為那么按概率計(jì)算摸到黃球且號(hào)數(shù)為奇數(shù)的學(xué)生有個(gè)共有32名學(xué)生站出來(lái),則有12個(gè)摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生,不喜歡數(shù)學(xué)課的學(xué)生有:,喜歡數(shù)學(xué)課的有80個(gè),估計(jì)該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是:.故選:.【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】按三角函數(shù)的定義,有.12、9【解析】

平分圓的直線過(guò)圓心,由此求得的等量關(guān)系式,進(jìn)而利用基本不等式求得最小值.【詳解】由于直線始終平分圓的周長(zhǎng),故直線過(guò)圓的圓心,即,所以.【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查利用基本不等式求最小值,屬于基礎(chǔ)題.13、【解析】

,即為首項(xiàng)為,公差為的等差數(shù)列,,,,由得,因?yàn)榛驎r(shí),有最大值,,即的最小值為,故答案為.【方法點(diǎn)晴】裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見的裂項(xiàng)技巧:①;②;③;④;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.14、【解析】

利用同角三角函數(shù)的基本關(guān)系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結(jié)合的范圍,求得的值.【詳解】,,,,,,故答案:.【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正切公式,二倍角的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.15、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.16、.【解析】

設(shè)填入的數(shù)從左到右依次為,則,利用基本不等式可求得的最大值及此時(shí)的和.【詳解】設(shè)在方框中填入的兩個(gè)正整數(shù)從左到右依次為,則,于是,,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故答案為:15【點(diǎn)睛】本題考查基本不等式成立的條件,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、或或【解析】

由倍角公式可將題目中的方程變形解出來(lái)【詳解】因?yàn)樗曰蛴傻糜傻盟运曰蛩曰蚓C上:或或【點(diǎn)睛】,我們?cè)诮忸}的時(shí)候要靈活選擇.18、(1);(2)1【解析】

(1)取中點(diǎn),連接,即為所求角。在中,易得MC,NC的長(zhǎng),MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點(diǎn),連接,易得,所以為的中位線,所以為中點(diǎn),所以的值為1?!驹斀狻浚?)取中點(diǎn),連接因?yàn)闉榫匦?,分別為中點(diǎn),所以所以異面直線與所成角就是與所成的銳角或直角因?yàn)槠矫嫫矫?,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圓周上點(diǎn),且,所以中,,由余弦定理可求得所以異面直線與所成角的余弦值為(2)連接,連接和交于點(diǎn),連接因?yàn)橹本€平面,直線平面,平面平面所以矩形的對(duì)角線交點(diǎn)為中點(diǎn)所以為的中位線,所以為中點(diǎn)又,所以的值為1【點(diǎn)睛】(1)異面直線所成夾角一般是要平移到一個(gè)平面。(2)通過(guò)幾何關(guān)系確定未知點(diǎn)的位置,再求解線段長(zhǎng)即可。19、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)當(dāng)時(shí),根據(jù),構(gòu)造,利用,兩式相減得到,然后驗(yàn)證,得到數(shù)列的通項(xiàng)公式;(Ⅱ)由上一問(wèn)可知.根據(jù)零點(diǎn)分和討論去絕對(duì)值,利用分組轉(zhuǎn)化求數(shù)列的和.試題解析:(Ⅰ)因?yàn)?,所以?dāng)時(shí),,兩式相減得:當(dāng)時(shí),,因?yàn)?得到,解得,,所以數(shù)列是首項(xiàng),公比為5的等比數(shù)列,則;(Ⅱ)由題意知,,易知當(dāng)時(shí),;時(shí),所以當(dāng)時(shí),,當(dāng)時(shí),,所以,,……當(dāng)時(shí),又因?yàn)椴粷M足滿足上式,所以.考點(diǎn):1.已知求;2.分組轉(zhuǎn)化法求和.【方法點(diǎn)睛】本題考查了數(shù)列求和,一般數(shù)列求和方法(1)分組轉(zhuǎn)化法,一般適用于等差數(shù)列加等比數(shù)列,(2)裂項(xiàng)相消法求和,,等的形式,(3)錯(cuò)位相減法求和,一般適用于等差數(shù)列乘以等比數(shù)列,(4)倒序相加法求和,一般距首末兩項(xiàng)的和是一個(gè)常數(shù),這樣可以正著寫和和倒著寫和,兩式兩式相加除以2得到數(shù)列求和,(5)或是具有某些規(guī)律求和,(6)本題考查了等差數(shù)列絕對(duì)值求和,需討論零點(diǎn)后分兩段求和.20、(1),,,,;(2),;(3)證明見解析;【解析】

(1)根據(jù)題意從小到大計(jì)算中的值即可.(2)易得數(shù)列的所有項(xiàng)的和等于中的每個(gè)項(xiàng)重復(fù)加了次,再根據(jù)等比數(shù)列求和即可.(3)分別證明當(dāng)時(shí),若為等差數(shù)列則數(shù)列恰有7項(xiàng)以及當(dāng)數(shù)列恰有7項(xiàng)證明為等差數(shù)列即可.【詳解】(1)易得當(dāng),,,時(shí),,,,,.(2)若是公比為2的等比數(shù)列,且,則數(shù)列的所有項(xiàng)的和等于中每一項(xiàng)重復(fù)加了次,故.即,又,故,易得隨著的增大而增大.當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),故,此時(shí).(3)證明:先證明充分性:若,且為等差數(shù)列,不妨設(shè),則數(shù)列也為等差數(shù)列為的等差數(shù)列.且最小值為,最大值為.故數(shù)列恰有7項(xiàng).再證明必要性:若數(shù)列恰有7項(xiàng).則因?yàn)?故的7項(xiàng)分別為.又,可得,即.同理有,故為等差數(shù)列.綜上可知,若,則為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng)【點(diǎn)睛】本題主要考查了數(shù)列綜合運(yùn)用,需要根據(jù)題意分析與的關(guān)系,將中的通項(xiàng)用中的項(xiàng)表達(dá),再計(jì)算即可.同時(shí)也考查了推理證明的能力.屬于難題.21、(1);(2)【解析】

分析:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論