湘贛十四校、等2025屆數(shù)學高一下期末調研模擬試題含解析_第1頁
湘贛十四校、等2025屆數(shù)學高一下期末調研模擬試題含解析_第2頁
湘贛十四校、等2025屆數(shù)學高一下期末調研模擬試題含解析_第3頁
湘贛十四校、等2025屆數(shù)學高一下期末調研模擬試題含解析_第4頁
湘贛十四校、等2025屆數(shù)學高一下期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湘贛十四校、等2025屆數(shù)學高一下期末調研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列{an}中,a3?a13=20,a6=4,則a10的值是()A.16 B.14 C.6 D.52.已知球的直徑SC=4,A,B是該球球面上的兩點,AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.3.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為()A.13+5 B.11+5 C.4.在△ABC中,角A、B、C所對的邊分別為a、b、c,若acosA=bcosB,則△ABC的形狀為()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形5.某象棋俱樂部有隊員5人,其中女隊員2人,現(xiàn)隨機選派2人參加一個象棋比賽,則選出的2人中恰有1人是女隊員的概率為()A. B. C. D.6.已知直線yx+2,則其傾斜角為()A.60° B.120° C.60°或120° D.150°7.化簡=()A. B.C. D.8.設向量=(2,4)與向量=(x,6)共線,則實數(shù)x=()A.2 B.3 C.4 D.69.若線性方程組的增廣矩陣是5b1102bA.1 B.2 C.3 D.410.從2名男同學和3名女同學中任選2人參加社區(qū)服務,則選中的2人都是女同學的概率為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.sin750°=12.等比數(shù)列的首項為,公比為q,,則首項的取值范圍是____________.13.中國古代數(shù)學著作《算法統(tǒng)宗》有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人要走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后達到目的地.”則該人最后一天走的路程為__________里.14.已知為銳角,,則________.15.已知函數(shù)的部分圖象如圖所示,則的值為_________.16.把一枚質地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若函數(shù)的周期,且滿足,求及的遞增區(qū)間;(2)若,在上的最小值為,求的最小值.18.在平面直角坐標系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.20.已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設數(shù)列的前n項和為,證明.21.已知圓,直線.圓與軸交于兩點,是圓上不同于的一動點,所在直線分別與交于.(1)當時,求以為直徑的圓的方程;(2)證明:以為直徑的圓截軸所得弦長為定值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

用等比數(shù)列的性質求解.【詳解】∵是等比數(shù)列,∴,∴.故選D.【點睛】本題考查等比數(shù)列的性質,靈活運用等比數(shù)列的性質可以很快速地求解等比數(shù)列的問題.在等比數(shù)列中,正整數(shù)滿足,則,特別地若,則.2、C【解析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.3、B【解析】

三視圖可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成.【詳解】幾何體可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成S=【點睛】已知三視圖,求原幾何體的表面積或體積是高考必考內容,主要考查空間想象能力,需要熟練掌握常見的幾何體的三視圖,會識別出簡單的組合體.4、C【解析】

利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判斷△ABC的形狀.【詳解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀為等腰三角形或直角三角形.故選C.考點:三角形的形狀判斷.5、B【解析】

直接利用概率公式計算得到答案.【詳解】故選:【點睛】本題考查了概率的計算,屬于簡單題.6、B【解析】

根據直線方程求出斜率,根據斜率和傾斜角之間的關系即可求出傾斜角.【詳解】由已知得直線的斜率,則傾斜角為120°,故選:B.【點睛】本題考查斜率和傾斜角的關系,是基礎題.7、D【解析】

根據向量的加法與減法的運算法則,即可求解,得到答案.【詳解】由題意,根據向量的運算法則,可得=++==,故選D.【點睛】本題主要考查了向量的加法與減法的運算法則,其中解答中熟記向量的加法與減法的運算法則,準確化簡、運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.8、B【解析】由向量平行的性質,有2∶4=x∶6,解得x=3,選B考點:本題考查平面向量的坐標表示,向量共線的性質,考查基本的運算能力.9、C【解析】

由題意得5×3421+【詳解】由題意得5×3421+解得b1則b2【點睛】本題主要考查了線性方程組的解法,以及增廣矩陣的概念,考查運算能力,屬于中檔題.10、D【解析】分析:分別求出事件“2名男同學和3名女同學中任選2人參加社區(qū)服務”的總可能及事件“選中的2人都是女同學”的總可能,代入概率公式可求得概率.詳解:設2名男同學為,3名女同學為,從以上5名同學中任選2人總共有共10種可能,選中的2人都是女同學的情況共有共三種可能則選中的2人都是女同學的概率為,故選D.點睛:應用古典概型求某事件的步驟:第一步,判斷本試驗的結果是否為等可能事件,設出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個數(shù);第三步,利用公式求出事件的概率.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】試題分析:由三角函數(shù)的誘導公式得sin750°=【考點】三角函數(shù)的誘導公式【名師點睛】本題也可以看作來自于課本的題,直接利用課本公式解題,這告訴我們一定要立足于課本.有許多三角函數(shù)的求值問題都是通過三角函數(shù)公式把一般的三角函數(shù)求值化為特殊角的三角函數(shù)求值而得解.12、【解析】

由題得,利用即可得解【詳解】由題意知,,可得,又因為,所以可求得.故答案為:【點睛】本題考查了等比數(shù)列的通項公式其前n項和公式、數(shù)列極限的運算法則,考查了推理能力與計算能力,屬于中檔題.13、3【解析】分析:每天走的路形成等比數(shù)列{an},q=,S3=1.利用求和公式即可得出.詳解:每天走的路形成等比數(shù)列{an},q=,S3=1.∴S3=1=,解得a1=2.∴該人最后一天走的路程=a1q5==3.故答案為:3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于基礎題.14、【解析】

利用同角三角函數(shù)的基本關系求出,并利用二倍角正切公式計算出的值,再利用兩角和的正切公式求出的值.【詳解】為銳角,則,,由二倍角正切公式得,因此,,故答案為.【點睛】本題考查同角三角函數(shù)的基本關系求值、二倍角正切公式和兩角和的正切公式求值,解題的關鍵就是靈活利用這些公式進行計算,考查運算求解能力,屬于中等題.15、【解析】

根據圖像可得,根據0所在位置,處于函數(shù)的單調減區(qū)間,即可得解.【詳解】由圖可得:,或由于0在函數(shù)的單調減區(qū)間內,所以.故答案為:【點睛】此題考查根據三角函數(shù)的圖象求參數(shù)的取值,常用代入法求解,判定初相的取值時,根據圖象結合單調性取值.16、【解析】

把一枚質地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)2.【解析】

(1)由函數(shù)的性質知,關于直線對稱,又函數(shù)的周期,兩個條件兩個未知數(shù),列兩個方程,所以可以求出,進而得到的解析式,求出的遞增區(qū)間;(2)求出的所有解,再解不等式,即可求出的最小值.【詳解】(1),由知,∴對稱軸∴,又,,由,得,函數(shù)遞增區(qū)間為;(2)由于,在上的最小值為,所以,即,所以,所以.【點睛】本題主要考查三角函數(shù)解析式、單調區(qū)間以及最值的求法,特別注意用代入法求單調區(qū)間時,要考慮復合函數(shù)的單調性,以免求錯.18、(1)(2)【解析】

(1)由題意求得所在直線的斜率再由直線方程點斜式求的方程,然后利用點到直線的距離公式求解;(2)設的坐標,由題意列式求得的坐標,再求出,代入三角形面積公式求解.【詳解】(1)由題意,,直線的方程為,即.點到直線的距離;(2)設,則的中點坐標為,則,解得,即,.的面積.【點睛】本題考查點到直線的距離公式的應用,考查點關于直線的對稱點的求法,是基礎題.19、(1);(2)【解析】

(1)由二倍角公式,并結合輔助角公式可得,再利用周期可求出答案;(2)由的范圍,可求得的范圍,進而可求出的范圍,從而可求得的值域.【詳解】(1),∴函數(shù)的最小正周期為.(2)∵,∴,∴,∴,∴函數(shù)在區(qū)間的值域為.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的周期及值域,考查學生的計算求解能力,屬于基礎題.20、(1);(2)見解析.【解析】【試題分析】(1)借助題設中的數(shù)列遞推式探求數(shù)列通項之間的關系,再運用等比數(shù)列的定義求得通項公式;(2)依據(1)的結論運用錯位相減法求解,再借助簡單縮放法推證:(1)當時,得,當時,得,所以,(2)由(1)得:,又①得②兩式相減得:,故,所以.點睛:解答本題的思路是充分借助題設條件,先探求數(shù)列的的通項公式,再運用錯位相減法求解前項和.解答第一問時,先借助題設中的數(shù)列遞推式探求數(shù)列通項之間的關系,再運用等比數(shù)列的定義求得通項公式;解答第二問時,先依據(1)中的結論求得,運用錯位相減求和法求得,使得問題獲解.21、(1);(2)證明見解析.【解析】

(1)討論點的位置,根據直線的方程,直線的方程分別與直線方程聯(lián)立,得出的坐標,進而得出圓心坐標以及半徑,即可得出該圓的方程;(2)討論點的位置,根據直角三角形的邊角關系得出的坐標,進而得出圓心坐標以及半徑,再由圓的弦長公式化簡即可證明.【詳解】(1)由圓的方程可知,①當點在第一象限時,如下圖所示當時,,所以直線的方程為由,解得直線的方程為由,解得則的中點坐標為,所以以為直徑的圓的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論