江蘇省泰州市高港區(qū)達標名校中考數學模試卷及答案解析_第1頁
江蘇省泰州市高港區(qū)達標名校中考數學模試卷及答案解析_第2頁
江蘇省泰州市高港區(qū)達標名校中考數學模試卷及答案解析_第3頁
江蘇省泰州市高港區(qū)達標名校中考數學模試卷及答案解析_第4頁
江蘇省泰州市高港區(qū)達標名校中考數學模試卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰州市高港區(qū)達標名校中考數學模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.2.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB,點P從點A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結束,設運動時間為x(單位:s),弦BP的長為y,那么下列圖象中可能表示y與x函數關系的是()A.① B.③ C.②或④ D.①或③3.如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π4.石墨烯是現(xiàn)在世界上最薄的納米材料,其理論厚度僅是0.00000000034m,這個數用科學記數法表示正確的是(

)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m5.下列實數中,為無理數的是()A. B. C.﹣5 D.0.31566.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉,使ON邊與BC邊重合,完成第一次旋轉;再繞點C逆時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;……在這樣連續(xù)6次旋轉的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.47.方程的解是()A. B. C. D.8.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數解C.當時,方程有兩個相等的實數解D.當時,方程總有兩個不相等的實數解9.如圖,已知,,則的度數為()A. B. C. D.10.如圖,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半徑為3,那么下列說法正確的是()A.點B、點C都在⊙A內 B.點C在⊙A內,點B在⊙A外C.點B在⊙A內,點C在⊙A外 D.點B、點C都在⊙A外11.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m12.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點A逆時針旋轉30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.14.春節(jié)期間,《中國詩詞大會)節(jié)目的播出深受觀眾喜愛,進一步激起了人們對古詩詞的喜愛,現(xiàn)有以下四句古詩詞:①鋤禾日當午;②春眠不覺曉;③白日依山盡;④床前明月光.甲、乙兩名同學從中各隨機選取了一句寫在紙上,則他們選取的詩句恰好相同的概率為________.15.一個凸多邊形的內角和與外角和相等,它是______邊形.16.二次函數y=的圖象如圖,點A0位于坐標原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數位于第一象限的圖象上,點C1,C2,C3…Cn在二次函數位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn=60°,菱形An﹣1BnAnCn的周長為.17.如圖,已知正八邊形ABCDEFGH內部△ABE的面積為6cm1,則正八邊形ABCDEFGH面積為_____cm1.18.已知二次函數y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再計算:其中.20.(6分)已知是關于的方程的一個根,則__21.(6分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經過點(﹣1,0),求方程﹣2x2+4x+c=0的根.22.(8分)拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數;(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.23.(8分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關于x的一次函數,其關系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關于x的函數表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關系可以用來描述.請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.24.(10分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調查,根據調查結果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據圖中信息解答下列問題:=1\*GB2⑴補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據以上統(tǒng)計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率25.(10分)計算:×(2﹣)﹣÷+.26.(12分)如圖,在Rt中,,分別以點A、C為圓心,大于長為半徑畫弧,兩弧相交于點M、N,連結MN,與AC、BC分別交于點D、E,連結AE.(1)求;(直接寫出結果)(2)當AB=3,AC=5時,求的周長.27.(12分)如圖,在等邊三角形ABC中,點D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:根據軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形2、D【解析】

分兩種情形討論當點P順時針旋轉時,圖象是③,當點P逆時針旋轉時,圖象是①,由此即可解決問題.【詳解】分兩種情況討論:①當點P順時針旋轉時,BP的長從增加到2,再降到0,再增加到,圖象③符合;②當點P逆時針旋轉時,BP的長從降到0,再增加到2,再降到,圖象①符合.故答案為①或③.故選D.【點睛】本題考查了動點問題函數圖象、圓的有關知識,解題的關鍵理解題意,學會用分類討論的思想思考問題,屬于中考??碱}型.3、B【解析】

連接OA、OC,然后根據圓周角定理求得∠AOC的度數,最后根據弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.4、C【解析】試題分析:根據科學記數法的概念可知:用科學記數法可將一個數表示的形式,所以將1.11111111134用科學記數法表示,故選C.考點:科學記數法5、B【解析】

根據無理數的定義解答即可.【詳解】選項A、是分數,是有理數;選項B、是無理數;選項C、﹣5為有理數;選項D、0.3156是有理數;故選B.【點睛】本題考查了無理數的判定,熟知無理數是無限不循環(huán)小數是解決問題的關鍵.6、D【解析】

如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉變換等知識,解題的關鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關鍵.7、D【解析】

按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結果要檢驗.8、C【解析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數解,當且時,方程有兩個不相等的實數解.綜上所述,說法C正確.故選C.9、B【解析】分析:根據∠AOC和∠BOC的度數得出∠AOB的度數,從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關系是解題的關鍵.10、D【解析】

先求出AB的長,再求出AC的長,由B、C到A的距離及圓半徑的長的關系判斷B、C與圓的關系.【詳解】由題意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,點B、點C都在⊙A外.故答案選D.【點睛】本題考查的知識點是點與圓的位置關系,解題的關鍵是熟練的掌握點與圓的位置關系.11、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應用,關鍵是構建直角三角形,解直角三角形求出答案.12、D【解析】分析:根據菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;

B、四條邊相等的四邊形是菱形,故錯誤;

C、對角線相互平分的四邊形是平行四邊形,故錯誤;

D、對角線相等且相互平分的四邊形是矩形,正確;

故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關鍵是熟記四邊形的判定定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

過點作于,根據三角形的性質及三角形內角和定理可計算再由旋轉可得,,根據三角形外角和性質計算,根據含角的直角三角形的三邊關系得和的長度,進而得到的長度,然后利用得到與的長度,于是可得.【詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉,使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點睛】本題考查三角形性質的綜合應用,要熟練掌握等腰三角形的性質,含角的直角三角形的三邊關系,旋轉圖形的性質.14、【解析】

用列舉法或者樹狀圖法解答即可.【詳解】解:如圖,由圖可得,甲乙兩人選取的詩句恰好相同的概率為.故答案為:.【點睛】本題考查用樹狀圖法或者列表法求隨機事件的概率,熟練掌握兩種解答方法是關鍵.15、四【解析】

任何多邊形的外角和是360度,因而這個多邊形的內角和是360度.n邊形的內角和是(n-2)?180°,如果已知多邊形的內角和,就可以得到一個關于邊數的方程,解方程就可以求出多邊形的邊數.【詳解】解:設邊數為n,根據題意,得(n-2)?180=360,解得n=4,則它是四邊形.故填:四.【點睛】此題主要考查已知多邊形的內角和求邊數,可以轉化為方程的問題來解決.16、4n【解析】試題解析:∵四邊形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等邊三角形.設△A0B1A1的邊長為m1,則B1(,);代入拋物線的解析式中得:,解得m1=0(舍去),m1=1;故△A0B1A1的邊長為1,同理可求得△A1B2A2的邊長為2,…依此類推,等邊△An-1BnAn的邊長為n,故菱形An-1BnAnCn的周長為4n.考點:二次函數綜合題.17、14【解析】

取AE中點I,連接IB,則正八邊形ABCDEFGH是由8個與△IDE全等的三角形構成.【詳解】解:取AE中點I,連接IB.則正八邊形ABCDEFGH是由8個與△IAB全等的三角形構成.∵I是AE的中點,∴S△IAB=12S則圓內接正八邊形ABCDEFGH的面積為:8×3=14cm1.

故答案為14.【點睛】本題考查正多邊形的性質,解答此題的關鍵是作出輔助線構造出三角形.18、增大.【解析】

根據二次函數的增減性可求得答案【詳解】∵二次函數y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數的性質,解題的關鍵是熟練的掌握二次函數的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、;【解析】

根據分式的化簡求值,先把分子分母因式分解,再算乘除,通分后計算減法,約分化簡,最后代入求值即可.【詳解】解:====當時,原式=.【點睛】此題主要考查了分式的化簡求值,把分式的除法化為乘法,然后約分是解題關鍵.20、10【解析】

利用一元二次方程的解的定義得到,再把變形為,然后利用整體代入的方法計算.【詳解】解:是關于的方程的一個根,,,.故答案為10.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.21、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對稱軸,再根據拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據二次函數與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數與一元二次方程,解題關鍵是運用了根與系數的關系以及二次函數的對稱性.22、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標為(1,2)或(4,﹣25).【解析】

(1)設交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據三角函數的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數聯(lián)立成方程組,解方程組即可.【詳解】(1)設拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標為(4,﹣25);當n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標為(1,2).綜上所述:D點坐標為(1,2)或(4,﹣25).【點睛】本題是二次函數綜合題.熟練掌握二次函數圖象上點的坐標特征、二次函數的性質和相似三角形的判定的性質;會利用待定系數法求函數解析式,把求兩函數交點問題轉化為解方程組的問題;理解坐標與圖形性質;會運用分類討論的思想解決數學問題.23、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】

(1)根據表格中的數據,運用待定系數法,即可求得y1關于x的函數表達式;(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據二次函數的性質,即可得出最短時間.【詳解】(1)設y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關于x的函數解析式為y1=2x+2.(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當x=9時,y取得最小值,最小值為39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.【點睛】本題主要考查了二次函數的應用,解此類題的關鍵是通過題意,確定出二次函數的解析式,然后確定其最大值最小值,在求二次函數的最值時,一定要注意自變量x的取值范圍.24、(1)72;(2)700;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論