安徽省巢湖第一中學2023-2024學年高一數(shù)學第二學期期末監(jiān)測試題含解析_第1頁
安徽省巢湖第一中學2023-2024學年高一數(shù)學第二學期期末監(jiān)測試題含解析_第2頁
安徽省巢湖第一中學2023-2024學年高一數(shù)學第二學期期末監(jiān)測試題含解析_第3頁
安徽省巢湖第一中學2023-2024學年高一數(shù)學第二學期期末監(jiān)測試題含解析_第4頁
安徽省巢湖第一中學2023-2024學年高一數(shù)學第二學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省巢湖第一中學2023-2024學年高一數(shù)學第二學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是函數(shù)的兩個零點,則()A. B.C. D.2.在投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金200萬,需場地,可獲得300萬;投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金300萬,需場地,可獲得200萬,現(xiàn)某單位可使用資金1400萬,場地,則投資這兩種產(chǎn)品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬3.若,且,則()A. B. C. D.4.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學生中隨機抽取25名學生進行問卷調(diào)查,則應抽取的女生人數(shù)為()A.5 B.10 C.15 D.205.等差數(shù)列中,,,下列結(jié)論錯誤的是()A.,,成等比數(shù)列 B.C. D.6.數(shù)列1,,,,…的一個通項公式為()A. B. C. D.7.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內(nèi)的兩個測點C與D,測得,,CD=30,并在點C測得塔頂A的仰角為60°,則塔高AB等于A. B. C. D.8.空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對應關(guān)系如表:指數(shù)值0~5051~100101~150151~200201~300空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴重污染如圖是某市10月1日-20日指數(shù)變化趨勢:下列敘述錯誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上的天數(shù)占C.該市10月的前半個月的空氣質(zhì)量越來越好D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好9.在△ABC中,若a=2bsinA,則B為A. B. C.或 D.或10.函數(shù)()的部分圖象如圖所示,若,且,則()A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經(jīng)建有索道供游客觀賞,經(jīng)測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現(xiàn)調(diào)查后發(fā)現(xiàn),游客對在同一圓周上三島A、B、C且位于(優(yōu)?。┮黄娘L景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風光,現(xiàn)決定在上選擇一個點D建立索道供游客游覽,經(jīng)研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)12.已知函數(shù)分別由下表給出:123211123321則當時,_____________.13.已知腰長為的等腰直角△中,為斜邊的中點,點為該平面內(nèi)一動點,若,則的最小值________.14.若數(shù)列滿足,則_____.15.等差數(shù)列滿足,則其公差為__________.16.隨機抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(Ⅰ)求;(Ⅱ)若向量與垂直,求的值.18.已知數(shù)列的前項和為,滿足且,數(shù)列的前項為,滿足(Ⅰ)設,求證:數(shù)列為等比數(shù)列;(Ⅱ)求的通項公式;(Ⅲ)若對任意的恒成立,求實數(shù)的最大值.19.已知數(shù)列滿足:.(1)若為等差數(shù)列,求的通項公式;(2)若單調(diào)遞增,求的取值范圍;20.如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點.(1)求證:直線平面;(2)求直線與平面所成角的余弦值;(3)設為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.21.如圖,三棱柱的側(cè)面是邊長為的菱形,,且.(1)求證:;(2)若,當二面角為直二面角時,求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

在同一直角坐標系中作出與的圖象,設兩函數(shù)圖象的交點,依題意可得,利用對數(shù)的運算性質(zhì)結(jié)合圖象即可得答案.【詳解】解:,在同一直角坐標系中作出與的圖象,

設兩函數(shù)圖象的交點,

則,即,

又,

所以,,即,

所以①;

又,故,即②,由①②得:,

故選:A.【點睛】本題考查根的存在性及根的個數(shù)判斷,依題意可得是關(guān)鍵,考查作圖能力與運算求解能力,屬于難題.2、B【解析】

設生產(chǎn)產(chǎn)品x百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即滿足的約束條件,由約束條件畫出可行域;要求應作怎樣的組合投資,可使獲利最大,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標函數(shù)看成是一條直線,分析目標函數(shù)與直線截距的關(guān)系,進而求出最優(yōu)解.【詳解】設生產(chǎn)產(chǎn)品百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區(qū)域:目標函數(shù)為.由解得.使目標函數(shù)為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當直線過點時截距最大.此時應作生產(chǎn)產(chǎn)品3.25百噸,生產(chǎn)產(chǎn)品2.5百噸的組合投資,可使獲利最大.

故選:B.【點睛】在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實問題中.屬于中檔題.3、A【解析】

利用二倍角的正弦公式和與余弦公式化簡可得.【詳解】∵,∴,∵,所以,∴,∴.故選:A【點睛】本題考查了二倍角的正弦公式,考查了二倍角的余弦公式,屬于基礎(chǔ)題.4、B【解析】

利用分層抽樣的定義和方法求解即可.【詳解】設應抽取的女生人數(shù)為,則,解得.故選B【點睛】本題主要考查分層抽樣的定義及方法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、C【解析】

根據(jù)條件得到公差,然后得到等差數(shù)列的通項,從而對四個選項進行判斷,得到答案.【詳解】等差數(shù)列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比數(shù)列,故A選項正確,,故B選項正確,,故C選項錯誤,,故D選項正確.故選:C.【點睛】本題考查求等差數(shù)列的項,等差數(shù)列求前項的和,屬于簡單題.6、A【解析】

把數(shù)列化為,根據(jù)各項特點寫出它的一個通項公式.【詳解】數(shù)列…可以化為,所以該數(shù)列的一個通項公式為.故選:A【點睛】本題考查了根據(jù)數(shù)列各項特點寫出它的一個通項公式的應用問題,是基礎(chǔ)題目.7、D【解析】在中,由正弦定理得,解得在中,8、C【解析】

根據(jù)所給圖象,結(jié)合中位數(shù)的定義、指數(shù)與污染程度的關(guān)系以及古典概型概率公式,對四個選項逐一判斷即可.【詳解】對,因為第10天與第11天指數(shù)值都略高100,所以中位數(shù)略高于100,正確;對,中度污染及以上的有第11,13,14,15,17天,共5天占,正確;對,由圖知,前半個月中,前4天的空氣質(zhì)量越來越好,后11天該市的空氣質(zhì)量越來越差,錯誤;對,由圖知,10月上旬大部分指數(shù)在100以下,10月中旬大部分指數(shù)在100以上,所以正確,故選C.【點睛】與實際應用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.9、C【解析】,,則或,選C.10、D【解析】

由三角函數(shù)的圖象求得,再根據(jù)三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】由圖象可知,,即,所以,即,又因為,則,解得,又由,所以,所以,又因為,所以圖中的最高點坐標為.結(jié)合圖象和已知條件可知,所以,故選D.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意畫出草圖,根據(jù)余弦定理求出的值,設點到的距離為,可得,分析可知取最大時,取最大值,然后再對為中點和不是中點兩種情況分析,可得的最大值為,然后再根據(jù)圓的有關(guān)性質(zhì)和正弦定理,即可求出結(jié)果.【詳解】根據(jù)題意可作出及其外接圓,連接,交于點,連接,如下圖:在中,由余弦定理,由為的內(nèi)角,可知,所以.設的半徑為,點到的距離為,點到的距離為,則,故取最大時,取最大值.①當為中點時,由垂徑定理知,即,此時,故;②當不是中點時,不與垂直,設此時與所成角為,則,故;由垂線段最短知,此時;綜上,當為中點時,到的距離最大,最大值為;由圓周角定理可知,,由垂徑定理知,此時點為優(yōu)弧的中點,故,則,在中,由正弦定理得所以.所以當△ADC面積最大時建立索道AD的長為公里.故答案為:.【點評】本題考查了正弦定理、余弦定理在解決實際問題中的應用,屬于中檔題.12、3【解析】

根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復合函數(shù)值求參數(shù),換元法是解題的關(guān)鍵,屬于基礎(chǔ)題.13、【解析】

如圖建立平面直角坐標系,∴,當sin時,得到最小值為,故選.14、【解析】

由遞推公式逐步求出.【詳解】.故答案為:【點睛】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題.15、【解析】

首先根據(jù)等差數(shù)列的性質(zhì)得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點睛】本題主要考查等差數(shù)列的性質(zhì),熟記公式為解題的關(guān)鍵,屬于簡單題.16、3【解析】

根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案.【詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,在[50,60)年齡段抽取的人數(shù)為.【點睛】本題主要考查了頻率分布直方圖的應用,其中解答中熟記頻率分布直方圖的性質(zhì),以及頻率分布直方圖中概率的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的數(shù)量積的坐標表示進行計算;(Ⅱ)由垂直關(guān)系,得到坐標間的等式關(guān)系,然后計算出參數(shù)的值.【詳解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量與垂直,∴∴,∴【點睛】已知,若,則有;已知,若,則有.18、(Ⅰ)見解析(Ⅱ)(Ⅲ)【解析】

(Ⅰ)對遞推公式變形可得,根據(jù)等比數(shù)列的定義,即可得證;(Ⅱ)化簡可得,然后再利用裂項相消法求和,即可得到結(jié)果;(Ⅲ)先求出,然后再利用分組求和求出,然后再利用分離常數(shù)法,可得,最后對進行分類討論,即可求出結(jié)果.【詳解】解:(Ⅰ)由得,變形為:,,且∴數(shù)列是以首項為2,公比為的等比數(shù)列(Ⅱ)由;(Ⅲ)由(Ⅰ)知數(shù)列是以首項為2,公比為的等比數(shù)列∴,于是∴=,由得從而,∴當n為偶數(shù)時,恒成立,而,∴1當n為奇數(shù)時,恒成立,而,∴綜上所述,,即的最大值為【點睛】本題考查等比數(shù)列的定義和通項公式、求和公式的運用,考查數(shù)列的裂項相消法求和和分組法求和,考查化簡運算能力,屬于中檔題.19、(1)(2)【解析】

(1)設出的通項公式,根據(jù)計算出對應的首項和公差,即可求解出通項公式;(2)根據(jù)條件得到,得到的奇數(shù)項成等差數(shù)列,的偶數(shù)項也成等差數(shù)列,根據(jù)單調(diào)遞增列出關(guān)于的不等式,求解出范圍即可.【詳解】(1)設,所以,所以,所以,所以;(2)因為,所以,所以,又因為,所以,當為奇數(shù)時,,當為偶數(shù)時,,因為單調(diào)遞增,所以,所以,所以.【點睛】本題考查等差數(shù)列的基本量求解以及根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,難度一般.(1)已知數(shù)列的類型和數(shù)列的遞推公式求解數(shù)列通項公式時,可采用設出數(shù)列通項公式的形式,然后根據(jù)遞推關(guān)系求解出數(shù)列通項公式中的基本量;(2)數(shù)列的單調(diào)性可通過與的大小關(guān)系來判斷.20、(1)見解析(2)(3)存在點,使,詳見解析【解析】

(1)設與的交點為,證明進而證明直線平面.(2)先證明直線與平面所成角的為,再利用長度關(guān)系計算.(3)過點作,證明平面,即,所以存在.【詳解】(1)設與的交點為,顯然為中點,又點為線段的中點,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,點在平面上的投影為點,直線與平面所成角的為,,,,.(3)過點作,又因為平面,平面,所以,平面,平面,平面,,所以存在點,使.【點睛】本題考查了立體幾何線面平行,線面夾角,動點問題,將線線垂直轉(zhuǎn)化為線面垂直是解題的關(guān)鍵.21、(1)見解析(2)【解析】

(1)利用直線與平面垂直的判定,結(jié)合三角形全等判定,得到,再次結(jié)合三角形全等,即可.(2)法一:建立坐標系,分別計算的法向量,結(jié)合兩向量夾角為直角,計算出的值,然后結(jié)合,即可.法二:設出OA=x,用x分別表示AB,B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論