廣東省揭陽市產(chǎn)業(yè)園2023-2024學年高一下數(shù)學期末聯(lián)考模擬試題含解析_第1頁
廣東省揭陽市產(chǎn)業(yè)園2023-2024學年高一下數(shù)學期末聯(lián)考模擬試題含解析_第2頁
廣東省揭陽市產(chǎn)業(yè)園2023-2024學年高一下數(shù)學期末聯(lián)考模擬試題含解析_第3頁
廣東省揭陽市產(chǎn)業(yè)園2023-2024學年高一下數(shù)學期末聯(lián)考模擬試題含解析_第4頁
廣東省揭陽市產(chǎn)業(yè)園2023-2024學年高一下數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省揭陽市產(chǎn)業(yè)園2023-2024學年高一下數(shù)學期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間中,有三條不重合的直線,,,兩個不重合的平面,,下列判斷正確的是A.若∥,∥,則∥ B.若,,則∥C.若,∥,則 D.若,,∥,則∥2.已知函數(shù)是奇函數(shù),若,則的取值范圍是()A. B. C. D.3.已知為第Ⅱ象限角,則的值為()A. B. C. D.4.若且,則的最小值是()A.6 B.12 C.24 D.165.正方體中,異面直線與BC所成角的大小為()A. B. C. D.6.從甲、乙、丙、丁四人中隨機選出人參加志愿活動,則甲被選中的概率為()A. B. C. D.7.在中,角所對的邊分別為,已知,則最大角的余弦值是()A. B. C. D.8.己知,,若軸上方的點滿足對任意,恒有成立,則點縱坐標的最小值為()A. B. C.1 D.29.三角形的一個角為60°,夾這個角的兩邊之比為,則這個三角形的最大角的正弦值為()A. B. C. D.10.在一個平面上,機器人到與點的距離為8的地方繞點順時針而行,它在行進過程中到經(jīng)過點與的直線的最近距離為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),有以下結(jié)論:①若,則;②在區(qū)間上是增函數(shù);③的圖象與圖象關(guān)于軸對稱;④設(shè)函數(shù),當時,.其中正確的結(jié)論為__________.12.過點(2,-3)且在兩坐標軸上的截距互為相反數(shù)的直線方程為_________________.13.在銳角△中,角所對應的邊分別為,若,則角等于________.14.若是等比數(shù)列,,,且公比為整數(shù),則______.15.已知角α的終邊與單位圓交于點.則___________.16.設(shè)向量,,且,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列,,已知,,(1)求數(shù)列的通項公式;(2)設(shè)為數(shù)列的前項和,對任意.(i)求證:;(ii)若恒成立,求實數(shù)的取值范圍.18.已知函數(shù)(1)解關(guān)于的不等式;(2)若,令,求函數(shù)的最小值.19.如圖,在直角梯形中,,,,,記,.(1)用,表示和;(2)求的值.20.已知向量.(1)若,求的值;(2)當時,求與夾角的余弦值.21.設(shè)向量.(1)當時,求的值;(2)若,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)空間中點、線、面的位置關(guān)系的判定與性質(zhì),逐項判定,即可求解,得到答案.【詳解】由題意,A中,若∥,∥,則與可能平行、相交或異面,故A錯誤;B中,若,,則與c可能平行,也可能垂直,比如墻角,故B錯誤;C中,若,∥,則,正確;D中,若,,∥,則與可能平行或異面,故D錯誤;故選C.【點睛】本題主要考查了線面位置關(guān)系的判定與證明,其中解答中熟記空間中點、線、面的位置關(guān)系,以及線面位置關(guān)系的判定定理和性質(zhì)定理是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.2、C【解析】

由題意首先求得m的值,然后結(jié)合函數(shù)的性質(zhì)求解不等式即可.【詳解】函數(shù)為奇函數(shù),則恒成立,即恒成立,整理可得:,據(jù)此可得:,即恒成立,據(jù)此可得:.函數(shù)的解析式為:,,當且僅當時等號成立,故奇函數(shù)是定義域內(nèi)的單調(diào)遞增函數(shù),不等式即,據(jù)此有:,由函數(shù)的單調(diào)性可得:,求解不等式可得的取值范圍是.本題選擇C選項.【點睛】對于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號“f”,轉(zhuǎn)化為解不等式(組)的問題,若f(x)為偶函數(shù),則f(-x)=f(x)=f(|x|).3、B【解析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【點睛】本題主要考查二倍角公式的應用以及象限角的集合應用.4、D【解析】試題分析:,當且僅當時等號成立,所以最小值為16考點:均值不等式求最值5、D【解析】

利用異面直線與BC所成角的的定義,平移直線,即可得答案.【詳解】在正方體中,易得.異面直線與垂直,即所成的角為.故選:D.【點睛】本題考查異面直線所成角的定義,考查對基本概念的理解,屬于基礎(chǔ)題.6、C【解析】分析:用列舉法得出甲、乙、丙、丁四人中隨機選出人參加志愿活動的事件數(shù),從而可求甲被選中的概率.詳解:從甲、乙、丙、丁四人中隨機選出人參加志愿活動,包括:甲乙;甲丙;甲?。灰冶?;乙??;丙丁6種情況,甲被選中的概率為.故選C.點睛:本題考查用列舉法求基本事件的概率,解題的關(guān)鍵是確定基本事件,屬于基礎(chǔ)題.7、B【解析】

由邊之間的比例關(guān)系,設(shè)出三邊長,利用余弦定理可求.【詳解】因為,所以c邊所對角最大,設(shè),由余弦定理得,故選B.【點睛】本題考查余弦定理,計算求解能力,屬于基本題.8、D【解析】

由題意首先利用平面向量的坐標運算法則確定縱坐標的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點P縱坐標的最小值即可.【詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當且僅當時等號成立.據(jù)此可得的最小值為,則的最小值為.即點縱坐標的最小值為2.故選D.【點睛】本題主要考查平面向量的坐標運算,二次函數(shù)最值的求解等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.9、B【解析】

由余弦定理,可得第三邊的長度,再由大角對大邊可得最大角,然后由正弦定理可得最大角的正弦值.【詳解】解:三角形的一個角為,夾這個角的兩邊之比為,設(shè)夾這個角的兩邊分別為和,則由余弦定理,可得第三邊的長度為,三角形的最大邊為,對應的角最大,記為,則由正弦定理可得,故選:B.【點睛】本題主要考查正弦定理和余弦定理的應用,考查了計算能力,屬于基礎(chǔ)題.10、A【解析】

由題意知機器人的運行軌跡為圓,利用圓心到直線的距離求出最近距離.【詳解】解:機器人到與點距離為8的地方繞點順時針而行,在行進過程中保持與點的距離不變,機器人的運行軌跡方程為,如圖所示;與,直線的方程為,即為,則圓心到直線的距離為,最近距離為.故選.【點睛】本題考查了直線和圓的位置關(guān)系,以及點到直線的距離公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、②③④【解析】

首先化簡函數(shù)解析式,逐一分析選項,得到答案.【詳解】①當時,函數(shù)的周期為,,或,所以①不正確;②時,,所以是增函數(shù),②正確;③函數(shù)還可以化簡為,所以與關(guān)于軸對稱,正確;④,當時,,,④正確故選②③④【點睛】本題考查了三角函數(shù)的化簡和三角函數(shù)的性質(zhì),屬于中檔題型.12、【解析】分析:分類討論截距為0和截距不為零兩種情況求解直線方程即可.詳解:當截距為0時,直線的方程為,滿足題意;當截距不為0時,設(shè)直線的方程為,把點代入直線方程可得,此時直線方程為.故答案為.點睛:求解直線方程時應該注意以下問題:一是根據(jù)斜率求傾斜角,要注意傾斜角的范圍;二是求直線方程時,若不能斷定直線是否具有斜率時,應對斜率存在與不存在加以討論;三是在用截距式時,應先判斷截距是否為0,若不確定,則需分類討論.13、【解析】試題分析:利用正弦定理化簡,得,因為,所以,因為為銳角,所以.考點:正弦定理的應用.【方法點晴】本題主要考查了正弦定理的應用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時注意條件中銳角三角形,屬于中檔試題.14、512【解析】

由題設(shè)條件知和是方程的兩個實數(shù)根,解方程并由公比q為整數(shù),知,,由此能夠求出公比,從而得到.【詳解】是等比數(shù)列,

,,

,,

和是方程的兩個實數(shù)根,

解方程,

得,,

公比q為整數(shù),

,,

,解得,

.故答案為:512【點睛】本題考查等比數(shù)列的通項公式的求法,利用了等比數(shù)列下標和的性質(zhì),是基礎(chǔ)題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.15、【解析】

直接利用三角函數(shù)的坐標定義求解.【詳解】由題得.故答案為【點睛】本題主要考查三角函數(shù)的坐標定義,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】

根據(jù)即可得出,進行數(shù)量積的坐標運算即可求出x.【詳解】∵;∴;∴x=﹣1;故答案為﹣1.【點睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標運算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)(i)見證明;(ii)【解析】

(1)計算可知數(shù)列為等比數(shù)列;(2)(i)要證即證{}恒為0;(ii)由前兩問求出再求出,帶入式子,再解不等式.【詳解】(1),又,是以2為首項,為公比的等比數(shù)列,;(2)(i),又恒成立,即(ii)由,,兩式相加即得:,,,,當n為奇數(shù)時,隨n的增大而遞增,且;當n為偶數(shù)時,隨n的增大而遞減,且;的最大值為,的最小值為2,解得,所以實數(shù)p的取值范圍為.【點睛】本類試題,注意看問題,一般情況,問題都會指明解題方向18、(1)答案不唯一,具體見解析(2)【解析】

(1)討論的范圍,分情況得的三個答案.(2)時,寫出表達式,利用均值不等式得到最小值.【詳解】(1)①當時,不等式的解集為,②當時,不等式的解集為,③當時,不等式的解集為(2)若時,令(當且僅當,即時取等號).故函數(shù)的最小值為.【點睛】本題考查了解不等式,均值不等式,函數(shù)的最小值,意在考查學生的綜合應用能力.19、(1),;(2)1【解析】

(1)根據(jù)向量的線性運算可直接求解得到結(jié)果;(2)將所求數(shù)量積轉(zhuǎn)化為,根據(jù)數(shù)量積運算性質(zhì)求得結(jié)果.【詳解】(1),(2)由(1)得:【點睛】本題考查利用基底表示向量、平面向量數(shù)量積的求解問題;關(guān)鍵是能夠熟練掌握平面向量的線性運算和數(shù)量積運算的性質(zhì).20、(1)-3;(2)-.【解析】

(1)根據(jù)向量平行的坐標關(guān)系求得(2)根據(jù)向量的數(shù)量積運算求得夾角.【詳解】解(1)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論