福建省廈門市思明區(qū)湖濱中學(xué)2024屆高一下數(shù)學(xué)期末考試試題含解析_第1頁
福建省廈門市思明區(qū)湖濱中學(xué)2024屆高一下數(shù)學(xué)期末考試試題含解析_第2頁
福建省廈門市思明區(qū)湖濱中學(xué)2024屆高一下數(shù)學(xué)期末考試試題含解析_第3頁
福建省廈門市思明區(qū)湖濱中學(xué)2024屆高一下數(shù)學(xué)期末考試試題含解析_第4頁
福建省廈門市思明區(qū)湖濱中學(xué)2024屆高一下數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福建省廈門市思明區(qū)湖濱中學(xué)2024屆高一下數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:90,89,90,95,93,94,93,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為()A.92,2 B.92,2.8 C.93,2 D.93,2.82.兩直角邊分別為1,的直角三角形繞其斜邊所在的直線旋轉(zhuǎn)一周,得到的幾何體的表面積是()A. B.3π C. D.3.過點且與直線平行的直線方程是()A. B.C. D.4.設(shè),是兩條不同的直線,,是兩個不同的平面,是下列命題正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則5.在各項均為正數(shù)的等比數(shù)列中,若,則()A.1 B.4C.2 D.6.某林場有樹苗30000棵,其中松樹苗4000棵.為調(diào)查樹苗的生長情況,采用分層抽樣的方法抽取一個容量為150的樣本,則樣本中松樹苗的數(shù)量為()A.30 B.25 C.20 D.157.已知菱形的邊長為,則()A. B. C. D.8.已知數(shù)列的前4項依次為,1,,,則該數(shù)列的一個通項公式可以是()A. B.C. D.9.已知,是兩個不同的平面,是兩條不同的直線,下列命題中錯誤的是()A.若∥,,,則B.若∥,,,則C.若,,,則⊥D.若⊥,,,,則10.設(shè)函數(shù),其中為已知實常數(shù),,則下列命題中錯誤的是()A.若,則對任意實數(shù)恒成立;B.若,則函數(shù)為奇函數(shù);C.若,則函數(shù)為偶函數(shù);D.當(dāng)時,若,則().二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.12.若,,則的值為______.13.已知是等比數(shù)列,且,,那么________________.14.已知腰長為的等腰直角△中,為斜邊的中點,點為該平面內(nèi)一動點,若,則的最小值________.15.等比數(shù)列的首項為,公比為q,,則首項的取值范圍是____________.16.若角是第四象限角,則角的終邊在_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.(Ⅰ)求證:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.18.已知等比數(shù)列{an}的前n項和為Sn,S3=,S6=.(1)求數(shù)列{an}的通項公式an;(2)令bn=6n-61+log2an,求數(shù)列{bn}的前n項和Tn.19.已知數(shù)列an的前n項和為Sn,a1(1)分別求數(shù)列an(2)若對任意的n∈N*,20.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.21.已知直線(1)若直線過點,且.求直線的方程.(2)若直線過點A(2,0),且,求直線的方程及直線,,軸圍成的三角形的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由平均數(shù)與方差的計算公式,計算90,90,93,94,93五個數(shù)的平均數(shù)和方差即可.【詳解】90,89,90,95,93,94,93,去掉一個最高分和一個最低分后是90,90,93,94,93,所以其平均數(shù)為,因此方差為.故選B【點睛】本題主要考查平均數(shù)與方差的計算,熟記公式即可,屬于基礎(chǔ)題型.2、A【解析】

由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐的側(cè)面積計算公式可得.【詳解】由題得直角三角形的斜邊為2,則斜邊上的高為.由題知該幾何體為兩個倒立的圓錐底對底組合在一起,其中,故選.【點睛】本題考查旋轉(zhuǎn)體的定義,圓錐的表面積的計算,屬于基礎(chǔ)題.3、D【解析】

先由題意設(shè)所求直線為:,再由直線過點,即可求出結(jié)果.【詳解】因為所求直線與直線平行,因此,可設(shè)所求直線為:,又所求直線過點,所以,解得,所求直線方程為:.故選:D【點睛】本題主要考查求直線的方程,熟記直線方程的常見形式即可,屬于基礎(chǔ)題型.4、D【解析】

根據(jù)空間中線線,線面,面面位置關(guān)系,逐項判斷即可得出結(jié)果.【詳解】A選項,若,,則可能平行、相交、或異面;故A錯;B選項,若,,,則可能平行或異面;故B錯;C選項,若,,,如果再滿足,才會有則與垂直,所以與不一定垂直;故C錯;D選項,若,,則,又,由面面垂直的判定定理,可得,故D正確.故選D【點睛】本題主要考查空間的線面,面面位置關(guān)系,熟記位置關(guān)系,以及判定定理即可,屬于??碱}型.5、C【解析】試題分析:由題意得,根據(jù)等比數(shù)列的性質(zhì)可知,又因為,故選C.考點:等比數(shù)列的性質(zhì).6、C【解析】

抽取比例為,,抽取數(shù)量為20,故選C.7、D【解析】

由菱形可直接得出所求兩向量的模長及夾角,直接利用向量數(shù)量積公式即可.【詳解】由菱形的性質(zhì)可以得出:所以選擇D【點睛】直接考查向量數(shù)量積公式,屬于簡單題8、A【解析】

根據(jù)各選擇項求出數(shù)列的首項,第二項,用排除法確定.【詳解】可用排除法,由數(shù)列項的正負(fù)可排除B,D,再看項的絕對值,在C中不合題意,排除C,只有A.可選.故選:A.【點睛】本題考查數(shù)列的通項公式,已知數(shù)列的前幾項,選擇一個通項公式,比較方便,可以利用通項公式求出數(shù)列的前幾項,把不合的排除即得.9、A【解析】

根據(jù)平面和直線關(guān)系,依次判斷每個選項得到答案.【詳解】A.若,,,則如圖所示情況,兩直線為異面直線,錯誤其它選項正確.故答案選A【點睛】本題考查了直線平面的關(guān)系,找出反例是解題的關(guān)鍵.10、D【解析】

利用兩角和的余弦公式化簡表達式.對于A選項,將化簡得到的表達式代入上述表達式,可判斷出A選項為真命題.對于B選項,將化簡得到的表達式代入上述表達式,可判斷出為奇函數(shù),由此判斷出B選項為真命題.對于C選項,將化簡得到的表達式代入上述表達式,可判斷出為偶函數(shù),由此判斷出C選項為真命題.對于D選項,根據(jù)、,求得的零點的表達式,由此求得(),進而判斷出D選項為假命題.【詳解】.不妨設(shè).為已知實常數(shù).若,則得;若,則得.于是當(dāng)時,對任意實數(shù)恒成立,即命題A是真命題;當(dāng)時,,它為奇函數(shù),即命題B是真命題;當(dāng)時,,它為偶函數(shù),即命題C是真命題;當(dāng)時,令,則,上述方程中,若,則,這與矛盾,所以.將該方程的兩邊同除以得,令(),則,解得().不妨取,(且),則,即(),所以命題D是假命題.故選:D【點睛】本小題主要考查兩角和的余弦公式,考查三角函數(shù)的奇偶性,考查三角函數(shù)零點有關(guān)問題的求解,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎(chǔ)題.12、【解析】

求出,將展開即可得解.【詳解】因為,,所以,所以.【點睛】本題主要考查了三角恒等式及兩角和的正弦公式,考查計算能力,屬于基礎(chǔ)題.13、【解析】

先根據(jù)等比數(shù)列性質(zhì)化簡方程,再根據(jù)平方性質(zhì)得結(jié)果.【詳解】∵是等比數(shù)列,且,,∴,即,則.【點睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力.14、【解析】

如圖建立平面直角坐標(biāo)系,∴,當(dāng)sin時,得到最小值為,故選.15、【解析】

由題得,利用即可得解【詳解】由題意知,,可得,又因為,所以可求得.故答案為:【點睛】本題考查了等比數(shù)列的通項公式其前n項和公式、數(shù)列極限的運算法則,考查了推理能力與計算能力,屬于中檔題.16、第二或第四象限【解析】

根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【詳解】因為角是第四象限角,所以,即有,當(dāng)為偶數(shù)時,角的終邊在第四象限;當(dāng)為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【點睛】本題主要考查象限角的集合的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.【解析】

(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點.【詳解】(Ⅰ)證明:因為平面,所以;因為底面是菱形,所以;因為,平面,所以平面.(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,因為,所以;因為平面,平面,所以;因為所以平面,平面,所以平面平面.(Ⅲ)存在點為中點時,滿足平面;理由如下:分別取的中點,連接,在三角形中,且;在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;又平面,平面,所以平面.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.18、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】

(1)根據(jù)等比數(shù)列的通項公式和前項求得.(2)將代入中,得是等差數(shù)列,再求和.【詳解】(1)∴,解得∴(2)∴∴數(shù)列是等差數(shù)列.又∴【點睛】本題考查等比數(shù)列和等差數(shù)列的通項和前項和,屬于基礎(chǔ)題.19、(1)an=3n-1【解析】

(1)設(shè)等差數(shù)列bn公差為d,則b解得d=3,bn當(dāng)n≥2時,an=2Sn-1a2=2a1+1=3aan是以1為首項3為公比的等比數(shù)列,則.;(2)由(1)知,Sn原不等式可化為k≥6(n-2)若對任意的n∈N*恒成立,問題轉(zhuǎn)化為求數(shù)列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大項為第3項,c3=62720、(1)(2)【解析】

(1)利用二倍角公式以及輔助角公式化簡即可.(2)利用配湊把打開即可.【詳解】解:(1)原式(2),,又,,,,【點睛】本題主要考查了二倍角公式,兩角和與差的正切的應(yīng)用.輔助角公式.21、(1);(2);【解析】

(1)根據(jù)已知求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論