版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省泉州市泉港區(qū)一中2023-2024學(xué)年高一下數(shù)學(xué)期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若一架飛機(jī)向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為,則目標(biāo)受損但未被擊毀的概率為()A. B. C. D.2.設(shè)向量,,若三點(diǎn)共線,則()A. B. C. D.23.不論為何值,直線恒過定點(diǎn)A. B. C. D.4.對于函數(shù),在使成立的所有常數(shù)中,我們把的最大值稱為函數(shù)的“下確界”.若函數(shù),的“下確界”為,則的取值范圍是()A. B. C. D.5.已知,則比多了幾項()A.1 B. C. D.6.圓的半徑為()A.1 B.2 C.3 D.47.在區(qū)間上隨機(jī)選取一個數(shù),則滿足的概率為()A. B. C. D.8.等比數(shù)列中,,則等于()A.16 B.±4 C.-4 D.49.已知,表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.已知、是平面上兩個不共線的向量,則下列關(guān)系式:①;②;③;④.正確的個數(shù)是()A.4 B.3 C.2 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知在中,,則____________.12.已知函數(shù)一個周期的圖象(如下圖),則這個函數(shù)的解析式為__________.13.已知向量、的夾角為,且,,則__________.14.已知數(shù)列滿足,,則_______;_______.15.已知數(shù)列的前n項和為,,且(),記(),若對恒成立,則的最小值為__.16.在等差數(shù)列中,若,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),是公差為的等差數(shù)列,是公比為的等比數(shù)列.且,,,.(1)分別求數(shù)列、的通項公式;(2)已知數(shù)列滿足:,求數(shù)列的通項公式.18.已知函數(shù),,(1)求的最小正周期;(2)若,求的最大值和最小值,并寫出相應(yīng)的x的值.19.已知函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間:(2)求函數(shù)在區(qū)間上的最大值及取最大值時的集合.20.已知為銳角,.(1)求的值;(2)求的值.21.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由已知條件利用對立事件概率計算公式直接求解.【詳解】由于一架飛機(jī)向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為;所以目標(biāo)受損的概率為:;目標(biāo)受損分為擊毀和未被擊毀,它們是對立事件;所以目標(biāo)受損的概率目標(biāo)受損被擊毀的概率目標(biāo)受損未被擊毀的概率;故目標(biāo)受損但未被擊毀的概率目標(biāo)受損的概率目標(biāo)受損被擊毀的概率,即目標(biāo)受損但未被擊毀的概率;故答案選D【點(diǎn)睛】本題考查概率的求法,注意對立事件概率計算公式的合理運(yùn)用,屬于基礎(chǔ)題.2、A【解析】
利用向量共線的坐標(biāo)表示可得,解方程即可.【詳解】三點(diǎn)共線,,又,,,解得.故選:A【點(diǎn)睛】本題考查了向量共線的坐標(biāo)表示,需掌握向量共線,坐標(biāo)滿足:,屬于基礎(chǔ)題.3、B【解析】
根據(jù)直線方程分離參數(shù),再由直線過定點(diǎn)的條件可得方程組,解方程組進(jìn)而可得m的值.【詳解】恒過定點(diǎn),恒過定點(diǎn),由解得即直線恒過定點(diǎn).【點(diǎn)睛】本題考查含有參數(shù)的直線過定點(diǎn)問題,過定點(diǎn)是解題關(guān)鍵.4、A【解析】
由下確界定義,,的最小值是,由余弦函數(shù)性質(zhì)可得.【詳解】由題意,的最小值是,又,由,得,,,時,,所以.故選:A.【點(diǎn)睛】本題考查新定義,由新定義明確本題中的下確界就是函數(shù)的最小值.可通過解不等式確定參數(shù)的范圍.5、D【解析】
由寫出,比較兩個等式得多了幾項.【詳解】由題意,則,那么:,又比多了項.故選:D.【點(diǎn)睛】本題考查對函數(shù)的理解和帶值計算問題,屬于基礎(chǔ)題.6、A【解析】
將圓的一般方程化為標(biāo)準(zhǔn)方程,確定所求.【詳解】因為圓,所以,所以,故選A.【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程與一般方程互化,圓的標(biāo)準(zhǔn)方程通過展開化為一般方程,圓的一般方程通過配方化為標(biāo)準(zhǔn)方程,屬于簡單題.7、D【解析】
在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長度比,即可求解.【詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長度比的幾何概型,可得概率為,故選D.【點(diǎn)睛】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認(rèn)真審題,合理利用長度比求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、D【解析】分析:利用等比中項求解.詳解:,因為為正,解得.點(diǎn)睛:等比數(shù)列的性質(zhì):若,則.9、A【解析】
根據(jù)線面垂直的判定與性質(zhì)、線面平行的判定與性質(zhì)依次判斷各個選項可得結(jié)果.【詳解】選項:由線面垂直的性質(zhì)定理可知正確;選項:由線面垂直判定定理知,需垂直于內(nèi)兩條相交直線才能說明,錯誤;選項:若,則平行關(guān)系不成立,錯誤;選項:的位置關(guān)系可能是平行或異面,錯誤.故選:【點(diǎn)睛】本題考查空間中線面平行與垂直相關(guān)命題的辨析,關(guān)鍵是能夠熟練掌握空間中直線與平面位置關(guān)系的判定與性質(zhì)定理.10、C【解析】
根據(jù)數(shù)量積的運(yùn)算性質(zhì)對選項進(jìn)行逐一判斷,即可得到答案.【詳解】①.,滿足交換律,正確.②.,滿足分配律,正確.③.,所以不正確.④.,
,可正可負(fù)可為0,所以④不正確.故選:C【點(diǎn)睛】本題考查向量數(shù)量積的運(yùn)算性質(zhì),屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)可得,根據(jù)商數(shù)關(guān)系和平方關(guān)系可解得結(jié)果.【詳解】因為,所以且,又,所以,所以,因為,所以.故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的符號法則,考查了同角公式中的商數(shù)關(guān)系和平方關(guān)系式,屬于基礎(chǔ)題.12、【解析】
由函數(shù)的圖象可得T=﹣,解得:T==π,解得ω=1.圖象經(jīng)過(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式為:f(x)=.故答案為f(x)=.13、【解析】
根據(jù)向量的數(shù)量積的應(yīng)用進(jìn)行轉(zhuǎn)化即可.【詳解】,與的夾角為,∴?||||cos4,則,故答案為.【點(diǎn)睛】本題主要考查向量長度的計算,根據(jù)向量數(shù)量積的應(yīng)用是解決本題的關(guān)鍵.14、【解析】
令代入可求得;方程兩邊取倒數(shù),構(gòu)造出等差數(shù)列,即可得答案.【詳解】令,則;∵,∴數(shù)列為等差數(shù)列,∴,∴.故答案為:;.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系求通項,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意兩邊取倒數(shù),構(gòu)造新等差數(shù)列的方法.15、【解析】
,即為首項為,公差為的等差數(shù)列,,,,由得,因為或時,有最大值,,即的最小值為,故答案為.【方法點(diǎn)晴】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.16、【解析】
利用等差數(shù)列廣義通項公式,將轉(zhuǎn)化為,從而求出的值,再由廣義通項公式求得.【詳解】在等差數(shù)列中,由,,得,即..故答案為:1.【點(diǎn)睛】本題考查等差數(shù)列廣義通項公式的運(yùn)用,考查基本量法求解數(shù)列問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)根據(jù)題意分別列出關(guān)于、的方程,求出這兩個量,然后分別求出數(shù)列、的首項,再利用等差數(shù)列和等比數(shù)列的通項公式可計算出數(shù)列、的通項公式;(2)令可得出的值,再令,由得出,兩式相減可求出,于此得出數(shù)列的通項公式.【詳解】(1)由題意得,,,解得,且,,,,,且,整理得,解得,,,由等比數(shù)列的通項公式可得;(2)由題意可知,對任意的,.當(dāng)時,,;當(dāng)時,由,可得,上述兩式相減得,即,.不適合上式,因此,.【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列通項公式的求解,以及利用作差法求數(shù)列通項,解題時要結(jié)合數(shù)列遞推式的結(jié)構(gòu)選擇合適的方法求解,考查運(yùn)算求解能力,屬于中等題.18、(1)(2)時最大值為2,時最小值【解析】
(1)由二倍角公式和輔助角公式可得,再由周期公式,可得所求值(2)由的范圍,可得的范圍,由于余弦函數(shù)的圖象和性質(zhì),可得所求最值.【詳解】(1)函數(shù),可得的最小正周期為;(2),,可得,,可得當(dāng)即時,可得取得最大值2;當(dāng),即時,可得取得最小值.【點(diǎn)睛】本題考查二倍角公式和兩角差的余弦函數(shù),考查余弦函數(shù)的圖象和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.19、(1),單調(diào)遞增區(qū)間為;(2)最大值為,取最大值時,的集合為.【解析】
(1)對進(jìn)行化簡轉(zhuǎn)換為正弦函數(shù),可得其最小正周期和遞增區(qū)間;(2)根據(jù)(1)的結(jié)果,可得正弦函數(shù)的最大值和此時的的集合.【詳解】解:(1)∴.增區(qū)間為:即單調(diào)遞增區(qū)間為(2)當(dāng)時,的最大值為,此時,∴取最大值時,的集合為.【點(diǎn)睛】本題考查二倍角公式和輔助角公式以及正弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)由二倍角公式,結(jié)合題意,可直接求出結(jié)果;(2)先由題意求出,,根據(jù),由兩角差的正弦公式,即可求出結(jié)果.【詳解】(1)因為,所以;(2)因為為銳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人房產(chǎn)買賣標(biāo)準(zhǔn)協(xié)議樣本(2024年版)版B版
- 個人債權(quán)轉(zhuǎn)讓協(xié)議(2024版)3篇
- 個人手車買賣合同
- 專業(yè)軟件技術(shù)開發(fā)服務(wù)協(xié)議(2024年更新版)版B版
- 二零二四商場LED顯示屏采購與安裝合同
- 2025年度城市綜合體配套廠房建造與裝修承包合同范本4篇
- 2025年度廠房土地開發(fā)及使用權(quán)出讓合同4篇
- 2025年度插座產(chǎn)品售后服務(wù)網(wǎng)絡(luò)建設(shè)合同4篇
- 2025年度科技園區(qū)場地轉(zhuǎn)租及知識產(chǎn)權(quán)保護(hù)協(xié)議4篇
- 2024年05月上海華夏銀行上海分行招考筆試歷年參考題庫附帶答案詳解
- 春節(jié)行車安全常識普及
- 電機(jī)維護(hù)保養(yǎng)專題培訓(xùn)課件
- 汽車租賃行業(yè)利潤分析
- 春節(jié)拜年的由來習(xí)俗來歷故事
- 2021火災(zāi)高危單位消防安全評估導(dǎo)則
- 佛山市服務(wù)業(yè)發(fā)展五年規(guī)劃(2021-2025年)
- 房屋拆除工程監(jiān)理規(guī)劃
- 醫(yī)院保安服務(wù)方案(技術(shù)方案)
- 高效能人士的七個習(xí)慣:實踐應(yīng)用課程:高級版
- 小數(shù)加減法計算題100道
- 通信電子線路(哈爾濱工程大學(xué))智慧樹知到課后章節(jié)答案2023年下哈爾濱工程大學(xué)
評論
0/150
提交評論