朝陽市重點中學中考數(shù)學考前最后一卷及答案解析_第1頁
朝陽市重點中學中考數(shù)學考前最后一卷及答案解析_第2頁
朝陽市重點中學中考數(shù)學考前最后一卷及答案解析_第3頁
朝陽市重點中學中考數(shù)學考前最后一卷及答案解析_第4頁
朝陽市重點中學中考數(shù)學考前最后一卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

朝陽市重點中學中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形2.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>53.在一幅長,寬的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整幅掛圖的面積是,設金色紙邊的寬為,那么滿足的方程是()A. B.C. D.4.某中學為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學類圖書平均每本書價格的1.2倍.已知學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學校購買文學類圖書平均每本書的價格是多少元?設學校購買文學類圖書平均每本書的價格是x元,則下面所列方程中正確的是()A. B.C. D.5.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.6.如圖,將△ABC繞點C(0,-1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)7.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°8.某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.10.下列運算正確的是()A.a(chǎn)2+a2=a4 B.(a+b)2=a2+b2 C.a(chǎn)6÷a2=a3 D.(﹣2a3)2=4a6二、填空題(共7小題,每小題3分,滿分21分)11.計算的結果為.12.如圖,點A為函數(shù)y=(x>0)圖象上一點,連結OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.13.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.14.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.15.如圖①,在矩形ABCD中,對角線AC與BD交于點O,動點P從點A出發(fā),沿AB勻速運動,到達點B時停止,設點P所走的路程為x,線段OP的長為y,若y與x之間的函數(shù)圖象如圖②所示,則矩形ABCD的周長為_____.16.從﹣2,﹣1,2,0這四個數(shù)中任取兩個不同的數(shù)作為點的坐標,該點不在第三象限的概率是_____.17.如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務,當海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km.三、解答題(共7小題,滿分69分)18.(10分)計算:()﹣2﹣+(﹣2)0+|2﹣|19.(5分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q.(1)求AB的長;(2)當BQ的長為時,請通過計算說明圓P與直線DC的位置關系.20.(8分)((1)計算:;(2)先化簡,再求值:,其中a=.21.(10分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數(shù)關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.22.(10分)為響應國家“厲行節(jié)約,反對浪費”的號召,某班一課外活動小組成員在全校范圍內隨機抽取了若干名學生,針對“你每天是否會節(jié)約糧食”這個問題進行了調查,并將調查結果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統(tǒng)計圖(如圖)(1)這次被抽查的學生共有______人,扇形統(tǒng)計圖中,“A組”所對應的圓心度數(shù)為______;(2)補全兩個統(tǒng)計圖;(3)如果該校學生共有2000人,請估計“每天都會節(jié)約糧食”的學生人數(shù);(4)若不節(jié)約零食造成的浪費,按平均每人每天浪費5角錢計算,小江認為,該校學生一年(365天)共將浪費:2000×20%×0.5×365=73000(元),你認為這種說法正確嗎?并說明理由.23.(12分)在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關于軸對稱的△A1B1C1;以M點為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.24.(14分)一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數(shù)”是________;若第n個“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個“五邊形數(shù)”是___________.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵2、D【解析】

先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.3、B【解析】

根據(jù)矩形的面積=長×寬,我們可得出本題的等量關系應該是:(風景畫的長+2個紙邊的寬度)×(風景畫的寬+2個紙邊的寬度)=整個掛圖的面積,由此可得出方程.【詳解】由題意,設金色紙邊的寬為,得出方程:(80+2x)(50+2x)=5400,整理后得:故選:B.【點睛】本題主要考查了由實際問題得出一元二次方程,對于面積問題應熟記各種圖形的面積公式,然后根據(jù)等量關系列出方程是解題關鍵.4、B【解析】

首先設文學類圖書平均每本的價格為x元,則科普類圖書平均每本的價格為1.2x元,根據(jù)題意可得等量關系:學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,根據(jù)等量關系列出方程,【詳解】設學校購買文學類圖書平均每本書的價格是x元,可得:故選B.【點睛】此題主要考查了分式方程的應用,關鍵是正確理解題意,找出題目中的等量關系,列出方程.5、D【解析】

根據(jù)有兩個角對應相等的三角形相似,以及根據(jù)兩邊對應成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應相等的三角形相似,兩邊對應成比例且夾角相等的兩個三角形相似.6、D【解析】

設點A的坐標是(x,y),根據(jù)旋轉變換的對應點關于旋轉中心對稱,再根據(jù)中點公式列式求解即可.【詳解】根據(jù)題意,點A、A′關于點C對稱,

設點A的坐標是(x,y),

=0,

=-1,

解得x=-a,y=-b-2,

∴點A的坐標是(-a,-b-2).

故選D.【點睛】本題考查了利用旋轉進行坐標與圖形的變化,根據(jù)旋轉的性質得出點A、A′關于點C成中心對稱是解題的關鍵7、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.8、C【解析】

試題分析:此題等量關系為:2×螺釘總數(shù)=螺母總數(shù).據(jù)此設未知數(shù)列出方程即可【詳解】.故選C.解:設安排x名工人生產(chǎn)螺釘,則(26-x)人生產(chǎn)螺母,由題意得

1000(26-x)=2×800x,故C答案正確,考點:一元一次方程.9、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.10、D【解析】

根據(jù)完全平方公式、合并同類項、同底數(shù)冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數(shù)冪的除法、積的乘方以及合并同類項,解決本題的關鍵是熟記公式和法則.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

直接把分子相加減即可.【詳解】=,故答案為:.【點睛】本題考查了分式的加減法,關鍵是要注意通分及約分的靈活應用.12、6【解析】

根據(jù)題意可以分別設出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質與反比例函數(shù)的圖象以及三角形的面積公式,解題的關鍵是熟練的掌握等腰三角形的性質與反比例函數(shù)的圖象以及三角形的面積公式.13、【解析】

要求絲線的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.

∵圓柱底面的周長為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長最小為2AC=4dm.

故答案為:4dm【點睛】本題考查了平面展開-最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側面展開成矩形,“化曲面為平面”是解題的關鍵.14、(14+2)米【解析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應用,主要利用了同時同地物高與影長成正比的性質,作輔助線求出AB的影長若全在水平地面上的長BF是解題的關鍵.15、1【解析】分析:根據(jù)點P的移動規(guī)律,當OP⊥BC時取最小值2,根據(jù)矩形的性質求得矩形的長與寬,易得該矩形的周長.詳解:∵當OP⊥AB時,OP最小,且此時AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點睛:本題考查了動點問題的函數(shù)圖象,關鍵是根據(jù)所給函數(shù)圖象和點的運動軌跡判斷出AP=4,OP=2.16、【解析】

列舉出所有情況,看在第四象限的情況數(shù)占總情況數(shù)的多少即可.【詳解】如圖:共有12種情況,在第三象限的情況數(shù)有2種,

故不再第三象限的共10種,

不在第三象限的概率為,

故答案為.【點睛】本題考查了樹狀圖法的知識,解題的關鍵是列出樹狀圖求出概率.17、40【解析】

首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.【點睛】本題考查解直角三角形的應用﹣方向角問題,解題的關鍵是證明PB=BC,推出∠C=30°.三、解答題(共7小題,滿分69分)18、2【解析】

直接利用零指數(shù)冪的性質以及負指數(shù)冪的性質、絕對值的性質、二次根式以及立方根的運算法則分別化簡得出答案.【詳解】解:原式=4﹣3+1+2﹣2=2.【點睛】本題考查實數(shù)的運算,難點也在于對原式中零指數(shù)冪、負指數(shù)冪、絕對值、二次根式以及立方根的運算化簡,關鍵要掌握這些知識點.19、(1)AB長為5;(2)圓P與直線DC相切,理由詳見解析.【解析】

(1)過A作AE⊥BC于E,根據(jù)矩形的性質得到CE=AD=1,AE=CD=3,根據(jù)勾股定理即可得到結論;

(2)過P作PF⊥BQ于F,根據(jù)相似三角形的性質得到PB=,得到PA=AB-PB=,過P作PG⊥CD于G交AE于M,根據(jù)相似三角形的性質得到PM=,根據(jù)切線的判定定理即可得到結論.【詳解】(1)過A作AE⊥BC于E,

則四邊形AECD是矩形,

∴CE=AD=1,AE=CD=3,

∵AB=BC,

∴BE=AB-1,

在Rt△ABE中,∵AB2=AE2+BE2,

∴AB2=32+(AB-1)2,

解得:AB=5;

(2)過P作PF⊥BQ于F,

∴BF=BQ=,

∴△PBF∽△ABE,

∴,

∴,

∴PB=,

∴PA=AB-PB=,

過P作PG⊥CD于G交AE于M,

∴GM=AD=1,∵DC⊥BC∴PG∥BC

∴△APM∽△ABE,

∴,

∴,

∴PM=,

∴PG=PM+MG==PB,

∴圓P與直線DC相切.【點睛】本題考查了直線與圓的位置關系,矩形的判定和性質,相似三角形的判定和性質,正確的作出輔助線是解題的關鍵.20、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值、絕對值的性質及數(shù)的開方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;(2)先算括號里面的,再算除法,最后把a的值代入進行計算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當a=時,原式==.21、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關系式;(2)依據(jù)A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.22、(1)50,108°(2)見解析;(3)600人;(4)不正確,見解析.【解析】

(1)由C組人數(shù)及其所占百分比可得總人數(shù),用360°乘以A組人數(shù)所占比例可得;(2)根據(jù)百分比之和為1求得A組百分比補全圖1,總人數(shù)乘以B的百分比求得其人數(shù)即可補全圖2;(3)總人數(shù)乘以樣本中A所占百分比可得;(4)由樣本中浪費糧食的人數(shù)所占比例不是20%即可作出判斷.【詳解】(1)這次被抽查的學生共有25÷50%=50人,扇形統(tǒng)計圖中,“A組”所對應的圓心度數(shù)為360°×=108°,故答案為50、108°;(2)圖1中A對應的百分比為1-20%-50%=30%,圖2中B類別人數(shù)為50×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論