遼寧省遼陽市名校2024屆中考沖刺卷數(shù)學試題含解析_第1頁
遼寧省遼陽市名校2024屆中考沖刺卷數(shù)學試題含解析_第2頁
遼寧省遼陽市名校2024屆中考沖刺卷數(shù)學試題含解析_第3頁
遼寧省遼陽市名校2024屆中考沖刺卷數(shù)學試題含解析_第4頁
遼寧省遼陽市名校2024屆中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省遼陽市名校2024屆中考沖刺卷數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°2.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a(chǎn)=2,b=3 B.a(chǎn)=-2,b=-3C.a(chǎn)=-2,b=3 D.a(chǎn)=2,b=-33.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π4.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.25.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣66.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.7.如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)8.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應(yīng)的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或69.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設(shè)點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區(qū)域面積是()A.18π B.27π C.π D.45π10.在反比例函數(shù)的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<111.據(jù)報道,目前我國“天河二號”超級計算機的運算速度位居全球第一,其運算速度達到了每秒338600000億次,數(shù)字338600000用科學記數(shù)法可簡潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×10912.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知xy=3,那么的值為______.14.分解因式:_____.15.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為.16.一個圓錐的三視圖如圖,則此圓錐的表面積為______.17.比較大?。?(填入“>”或“<”號)18.如圖,平面直角坐標系中,經(jīng)過點B(﹣4,0)的直線y=kx+b與直線y=mx+2相交于點A(,-1),則不等式mx+2<kx+b<0的解集為____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)如圖1,半徑為2的圓O內(nèi)有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認為葛叔叔的想法能實現(xiàn)嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②20.(6分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數(shù)的圖象經(jīng)過點,求反比例函數(shù)的解析式;(3)當時,若直線與直線和(2)反比例函數(shù)的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.21.(6分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:調(diào)查了________名學生;補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(8分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數(shù)關(guān)系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?23.(8分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.24.(10分)當=,b=2時,求代數(shù)式的值.25.(10分)某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖(1)所示,成本y2與銷售月份之間的關(guān)系如圖(2)所示(圖(1)的圖象是線段圖(2)的圖象是拋物線)分別求出y1、y2的函數(shù)關(guān)系式(不寫自變量取值范圍);通過計算說明:哪個月出售這種蔬菜,每千克的收益最大?26.(12分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.27.(12分)根據(jù)圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應(yīng)放入大球、小球各多少個?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.2、B【解析】分析:根據(jù)整式的乘法,先還原多項式,然后對應(yīng)求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關(guān)系,利用它們之間的互逆運算的關(guān)系是解題關(guān)鍵.3、A【解析】

根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點睛】本題考查的知識點是扇形面積的計算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.4、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關(guān)鍵.5、C【解析】

分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關(guān)鍵.6、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.7、D【解析】

首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標,進而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.8、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關(guān)鍵.9、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關(guān)鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.10、A【解析】

根據(jù)反比例函數(shù)的性質(zhì),當反比例函數(shù)的系數(shù)大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數(shù)的性質(zhì):①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內(nèi),y隨x的增大而減??;當k<0時,在同一個象限,y隨x的增大而增大.11、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:數(shù)字338600000用科學記數(shù)法可簡潔表示為3.386×108故選:A【點睛】本題考查科學記數(shù)法—表示較大的數(shù).12、B【解析】

根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、±2【解析】分析:先化簡,再分同正或同負兩種情況作答.詳解:因為xy=3,所以x、y同號,于是原式==,當x>0,y>0時,原式==2;當x<0,y<0時,原式==?2故原式=±2.點睛:本題考查的是二次根式的化簡求值,能夠正確的判斷出化簡過程中被開方數(shù)底數(shù)的符號是解答此題的關(guān)鍵.14、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應(yīng)用完全平方公式分解即可:.15、(10,3)【解析】

根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設(shè)EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標.【詳解】∵四邊形AOCD為矩形,D的坐標為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設(shè)EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標為(10,3).16、55πcm2【解析】

由正視圖和左視圖判斷出圓錐的半徑和母線長,然后根據(jù)圓錐的表面積公式求解即可.【詳解】由三視圖可知,半徑為5cm,圓錐母線長為6cm,

∴表面積=π×5×6+π×52=55πcm2,故答案為:55πcm2.【點睛】本題考查了圓錐的計算,由該三視圖中的數(shù)據(jù)確定圓錐的底面直徑和母線長是解本題的關(guān)鍵,本題體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想.如果圓錐的底面半徑為r,母線長為l,那么圓錐的表面積=πrl+πr2.17、>【解析】

試題解析:∵<∴4<.考點:實數(shù)的大小比較.【詳解】請在此輸入詳解!18、﹣4<x<﹣【解析】根據(jù)函數(shù)的圖像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函數(shù)y=kx+b的下面,且它們的值小于0的解集是﹣4<x<﹣.故答案為﹣4<x<﹣.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【解析】

(1)當AB是過P點的直徑時,AB最長;當AB⊥OP時,AB最短,分別求出即可.(2)如圖在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點D在優(yōu)弧AEC上(點D不與A、C重合),當D與E重合時,S△ADC最大值=S△AEC,由S△ABC為定值,故此時四邊形ABCD的面積最大,再根據(jù)勾股定理和等邊三角形的性質(zhì)求出此時的面積與周長即可.【詳解】(1)(1)當AB是過P點的直徑時,AB最長=2×2=4;當AB⊥OP時,AB最短,AP=∴AB=2(2)如圖,在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,當D與E重合時,S△ADC最大故此時四邊形ABCD的面積最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周長為AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=S△ABC=∴四邊形ABCD面積最大值為(2500+2400)平方米.【點睛】此題主要考查圓的綜合利用,解題的關(guān)鍵是熟知圓的性質(zhì)定理與垂徑定理.20、(1),;(2);的取值范圍是:.【解析】

(1)把代入得出的值,進而得出點坐標;(2)當時,將代入,進而得出的值,求出點坐標得出反比例函數(shù)的解析式;(3)可得,當向下運動但是不超過軸時,符合要求,進而得出的取值范圍.【詳解】解:(1)∵直線:經(jīng)過點,∴,∴,∴;(2)當時,將代入,得,,∴代入得,,∴;(3)當時,即,而,如圖,,當向下運動但是不超過軸時,符合要求,∴的取值范圍是:.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點,當有兩個函數(shù)的時候,著重使用一次函數(shù),體現(xiàn)了方程思想,綜合性較強.21、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學生數(shù);(2)用學生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.22、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】

(1)首先求得點A的坐標,然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設(shè)M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設(shè)直線的函數(shù)關(guān)系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,

當x=8時,y=16,

∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設(shè)點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(32,0)(3)設(shè)M(a,a2),則MN=,又∵點P與點M縱坐標相同,∴x+4=a2,∴x=,∴點P的橫坐標為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當a=6時,取最大值1,∴當M的橫坐標為6時,MN+3PM的長度的最大值是123、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】

(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計算即可;(3)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點睛】本題主要考查平行線分線段成比例及正方形的性質(zhì),掌握平行線分線段中的線段對應(yīng)成比例是解題的關(guān)鍵,注意利用比例相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論