江蘇省南京十三中、中華中學(xué)2025屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
江蘇省南京十三中、中華中學(xué)2025屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
江蘇省南京十三中、中華中學(xué)2025屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
江蘇省南京十三中、中華中學(xué)2025屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
江蘇省南京十三中、中華中學(xué)2025屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南京十三中、中華中學(xué)2025屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某單位職工老年人有30人,中年人有50人,青年人有20人,為了了解職工的建康狀況,用分層抽樣的方法從中抽取10人進(jìn)行體檢,則應(yīng)抽查的老年人的人數(shù)為()A.3 B.5 C.2 D.12.已知數(shù)列的前項(xiàng)和為,若,對(duì)任意的正整數(shù)均成立,則()A.162 B.54 C.32 D.163.直線在軸上的截距為,在軸上的截距為,則()A. B. C. D.4.已知函數(shù),則在上的單調(diào)遞增區(qū)間是()A. B. C. D.5.下列函數(shù)中,在區(qū)間上是減函數(shù)的是()A. B. C. D.6.定義平面凸四邊形為平面上沒有內(nèi)角度數(shù)大于的四邊形,在平面凸四邊形中,,,,,設(shè),則的取值范圍是()A. B. C. D.7.若,則的坐標(biāo)是()A. B. C. D.8.在中,角,,所對(duì)的邊分別為,,,若,且,則的面積的最大值為()A. B. C. D.9.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形10.設(shè)x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.若等比數(shù)列的各項(xiàng)均為正數(shù),且,則等于__________.12.已知,,兩圓和只有一條公切線,則的最小值為________13.設(shè)數(shù)列的前n項(xiàng)和為,關(guān)于數(shù)列,有下列三個(gè)命題:(1)若既是等差數(shù)列又是等比數(shù)列,則;(2)若,則是等差數(shù)列:(3)若,則是等比數(shù)列這些命題中,真命題的序號(hào)是__________________________.14.已知向量、的夾角為,且,,則__________.15.設(shè)等差數(shù)列,的前項(xiàng)和分別為,,若,則__________.16.已知向量,若向量與垂直,則等于_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,,.(1)求的最小值及相應(yīng)的t的值;(2)若與共線,求實(shí)數(shù)m.18.已知函數(shù).(1)求在區(qū)間上的單調(diào)遞增區(qū)間;(2)求在的值域.19.在中,角所對(duì)的邊分別為,已知,.(1)求的值;(2)若,求周長的取值范圍.20.在銳角三角形中,分別是角的對(duì)邊,且.(1)求角的大??;(2)若,求的取值范圍.21.在數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

先由題意確定抽樣比,進(jìn)而可求出結(jié)果.【詳解】由題意該單位共有職工人,用分層抽樣的方法從中抽取10人進(jìn)行體檢,抽樣比為,所以應(yīng)抽查的老年人的人數(shù)為.故選A【點(diǎn)睛】本題主要考查分層抽樣,會(huì)由題意求抽樣比即可,屬于基礎(chǔ)題型.2、B【解析】

由,得到數(shù)列表示公比為3的等比數(shù)列,求得,進(jìn)而利用,即可求解.【詳解】由,可得,所以數(shù)列表示公比為3的等比數(shù)列,又由,,得,解得,所以,所以故選B.【點(diǎn)睛】本題主要考查了等比數(shù)列的定義,以及數(shù)列中與之間的關(guān)系,其中解答中熟記等比數(shù)列的定義和與之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】

令求,利用求.【詳解】令,由得:,所以令,由得:,所以,故選B.【點(diǎn)睛】本題考查了直線的截距問題,直線方程,令解出,得到直線的縱截距.令解出,得到直線的橫截距.4、C【解析】

先令,則可求得的單調(diào)區(qū)間,再根據(jù),對(duì)賦值進(jìn)而限定范圍即可【詳解】由題,令,則,當(dāng)時(shí),在上單調(diào)遞增,則當(dāng)時(shí),的單調(diào)增區(qū)間為,故選:C【點(diǎn)睛】本題考查正弦型函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題5、C【解析】

根據(jù)初等函數(shù)的單調(diào)性對(duì)各個(gè)選項(xiàng)的函數(shù)的解析式進(jìn)行逐一判斷【詳解】函數(shù)在單調(diào)遞增,在單調(diào)遞增.

在單調(diào)遞減,在單調(diào)遞增.故選:C【點(diǎn)睛】本題主要考查了基本初等函數(shù)的單調(diào)性的判斷,屬于基礎(chǔ)試題.6、D【解析】

先利用余弦定理計(jì)算,設(shè),將表示為的函數(shù),再求取值范圍.【詳解】如圖所示:在中,利用正弦定理:當(dāng)時(shí),有最小值為當(dāng)時(shí),有最大值為(不能取等號(hào))的取值范圍是故答案選D【點(diǎn)睛】本題考查了利用正余弦定理計(jì)算長度范圍,將表示為的函數(shù)是解題的關(guān)鍵.7、C【解析】

,.故選C.8、A【解析】

由以及,結(jié)合二倍角的正切公式,可得,根據(jù)三角形的內(nèi)角的范圍可得,由余弦定理以及基本不等式可得,再根據(jù)面積公式可得答案.【詳解】因?yàn)?,且,所以,所以,則.由于為定值,由余弦定理得,即.根據(jù)基本不等式得,即,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.所以.故選:A【點(diǎn)睛】本題考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面積公式,屬于中檔題.9、D【解析】

利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點(diǎn)睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計(jì)算能力,熟練掌握余弦定理是解答本題的關(guān)鍵.10、C【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標(biāo)函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當(dāng)直線y=2x﹣z過A時(shí),直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點(diǎn)評(píng)】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、50【解析】由題意可得,=,填50.12、9【解析】

兩圓只有一條公切線,可以判斷兩圓是內(nèi)切關(guān)系,可以得到一個(gè)等式,結(jié)合這個(gè)等式,可以求出的最小值.【詳解】,圓心為,半徑為2;,圓心為,半徑為1.因?yàn)閮蓤A只有一條公切線,所以兩圓是內(nèi)切關(guān)系,即,于是有(當(dāng)且僅當(dāng)取等號(hào)),因此的最小值為9.【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.13、(1)、(2)、(3)【解析】

利用等差數(shù)列和等比數(shù)列的定義,以及等差數(shù)列和等比數(shù)列的前項(xiàng)和形式,逐一判斷即可.【詳解】既是等差數(shù)列又是等比數(shù)列的數(shù)列是非零常數(shù)列,故(1)正確.等差數(shù)列的前項(xiàng)和是二次函數(shù)形式,且不含常數(shù),故(2)正確.等比數(shù)列的前項(xiàng)和是常數(shù)加上常數(shù)乘以的形式,故(3)正確.故答案為:(1),(2),(3)【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的定義,同時(shí)考查了等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于簡單題.14、【解析】

根據(jù)向量的數(shù)量積的應(yīng)用進(jìn)行轉(zhuǎn)化即可.【詳解】,與的夾角為,∴?||||cos4,則,故答案為.【點(diǎn)睛】本題主要考查向量長度的計(jì)算,根據(jù)向量數(shù)量積的應(yīng)用是解決本題的關(guān)鍵.15、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分?jǐn)?shù)的性質(zhì),將項(xiàng)的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點(diǎn)睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問題,將兩個(gè)等差數(shù)列的項(xiàng)的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.16、2【解析】

根據(jù)向量的數(shù)量積的運(yùn)算公式,列出方程,即可求解.【詳解】由題意,向量,因?yàn)橄蛄颗c垂直,所以,解得.故答案為:2.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的垂直關(guān)系的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時(shí),最小值為;(2).【解析】

(1)利用向量的模長公式計(jì)算出的表達(dá)式然后求最值.

(2)先求出的坐標(biāo),利用向量平行的公式得到關(guān)于m的方程,可解得答案.【詳解】(1)∵,

∴當(dāng)時(shí),取得最小值.(2).∵與共線,∴,則.【點(diǎn)睛】本題考查向量的模長的計(jì)算以及其最值和根據(jù)向量平行求參數(shù)的值,屬于基礎(chǔ)題.18、(1)和.(2)【解析】

(1)利用輔助角公式可將函數(shù)化簡為;令可求出的單調(diào)遞增區(qū)間,截取在上的部分即可得到所求的單調(diào)遞增區(qū)間;(2)利用的范圍可求得的范圍,對(duì)應(yīng)正弦函數(shù)的圖象可求得的范圍,進(jìn)而得到函數(shù)的值域.【詳解】(1)令,解得:令,可知在上單調(diào)遞增令,可知在上單調(diào)遞增在上的單調(diào)遞增區(qū)間為:和(2)當(dāng)時(shí),即在的值域?yàn)椋骸军c(diǎn)睛】本題考查正弦型函數(shù)單調(diào)區(qū)間和值域的求解問題;解決此類問題的常用方法是采用整體對(duì)應(yīng)的方式,將整體對(duì)應(yīng)正弦函數(shù)的單調(diào)區(qū)間或整體所處的范圍,從而結(jié)合正弦函數(shù)的知識(shí)可求得結(jié)果.19、(1)3;(2).【解析】

(1)先用二倍角公式化簡,再根據(jù)正弦定理即可解出;(2)用正弦定理分別表示,再用三角形內(nèi)角和及和差公式化簡,轉(zhuǎn)化為三角函數(shù)求最值.【詳解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周長:,又因?yàn)?,所?因此周長的取值范圍是.【點(diǎn)睛】本題考查了正余弦定理解三角形,三角形求邊長取值范圍常用的方法:1、轉(zhuǎn)化為三角函數(shù)求最值;2、基本不等式.20、(1);(2)【解析】

(1)利用正弦定理邊化角,可整理求得,根據(jù)三角形為銳角三角形可確定的取值;(2)利用正弦定理可將轉(zhuǎn)化為,利用兩角和差正弦公式、輔助角公式整理得到,根據(jù)的范圍可求得正弦型函數(shù)的值域,進(jìn)而得到所求取值范圍.【詳解】(1)由正弦定理得:為銳角三角形,,即(2)由正弦定理得:為銳角三角形,,即【點(diǎn)睛】本題考查正弦定理邊化角的應(yīng)用、邊長之和的范圍的求解問題;求解邊長之和范圍問題的關(guān)鍵是能夠利用正弦定理將問題轉(zhuǎn)化為三角函數(shù)值域的求解問題;易錯(cuò)點(diǎn)是在求解三角函數(shù)值域時(shí),忽略角的范圍限制,造成求解錯(cuò)誤.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論