版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省宜春三中高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線與直線平行,則的值為()A.1 B.﹣1 C.±1 D.02.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}3.已知函數(shù),,的零點分別為a,b,c,則()A. B. C. D.4.在中,,設(shè)向量與的夾角為,若,則的取值范圍是()A. B. C. D.5.已知等比數(shù)列的公比為正數(shù),且,則()A. B. C. D.6.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.7.設(shè)是復(fù)數(shù),從,,,,,,中選取若干對象組成集合,則這樣的集合最多有()A.3個元素 B.4個元素 C.5個元素 D.6個元素8.已知表示兩條不同的直線,表示三個不同的平面,給出下列四個命題:①,,,則;②,,,則;③,,,則;④,,,則其中正確的命題個數(shù)是()A.1 B.2 C.3 D.49.已知點O是邊長為2的正三角形ABC的中心,則()A. B. C. D.10.長方體中,已知,,棱在平面內(nèi),則長方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列的前項和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前15項和.12.從1,2,3,4,5中任意取出兩個不同的數(shù),其和為5的概率為________.13.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.14.已知,,若,則實數(shù)_______.15.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.16.等比數(shù)列的前項和為,若,,成等差數(shù)列,則其公比為_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為.(1)若,求角的大??;(2)若是邊上的中線,求證:.18.設(shè)的內(nèi)角所對應(yīng)的邊長分別是,且.(Ⅰ)當(dāng)時,求的值;(Ⅱ)當(dāng)?shù)拿娣e為時,求的值.19.已知向量(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,,若,求的周長.20.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)求函數(shù)在上的最大值和最小值.21.在平面直角坐標系中,O是坐標原點,向量若C是AB所在直線上一點,且,求C的坐標.若,當(dāng),求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
兩直線平行表示斜率相同或者都垂直x軸,即?!驹斀狻慨?dāng)時,兩直線分別為:與直線,不平行,當(dāng)時,直線化為:直線化為:,兩直線平行,所以,,解得:,當(dāng)時,兩直線重合,不符,所以,【點睛】直線平行即表示斜率相同,且截距不同,如果截距相同則表示同一條直線。2、D【解析】
根據(jù)并集定義計算.【詳解】由題意A∪B={x|-2<x<3}.故選D.【點睛】本題考查集合的并集運算,屬于基礎(chǔ)題.3、B【解析】
,,分別為,,的根,作出,,的圖象與直線,觀察交點的橫坐標的大小關(guān)系.【詳解】由題意可得,,分別為,,的根,作出,,,的圖象,與直線的交點的橫坐標分別為,,,由圖象可得,故選:.【點睛】本題主要考查了函數(shù)的零點,函數(shù)的圖象,數(shù)形結(jié)合思想,屬于中檔題.4、A【解析】
根據(jù)向量與的夾角的余弦值,得到,然后利用正弦定理,表示出,根據(jù)的范圍,得到的范圍.【詳解】因為向量與的夾角為,且,所以,在中,由正弦定理,得,所以,因為,所以,所以.故選:A.【點睛】本題考查向量的夾角,正弦定理解三角形,求正弦函數(shù)的值域,屬于簡單題.5、D【解析】設(shè)公比為,由已知得,即,又因為等比數(shù)列的公比為正數(shù),所以,故,故選D.6、C【解析】
先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結(jié)果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【點睛】本題考查圓與直線的幾何關(guān)系以及點到直線的距離,屬基礎(chǔ)題.7、A【解析】
設(shè)復(fù)數(shù)分別計算出以上式子,根據(jù)集合的元素互異性,可判斷答案.【詳解】解:設(shè)復(fù)數(shù),,,,故由以上的數(shù)組成的集合最多有,,這個元素,故選:【點睛】本題考查復(fù)數(shù)的運算及相關(guān)概念,屬于中檔題.8、B【解析】
根據(jù)線面和線線平行與垂直的性質(zhì)逐個判定即可.【詳解】對①,,,不一定有,故不一定成立.故①錯誤.對②,令為底面為直角三角形的直三棱柱的三個側(cè)面,且,,,但此時,故不一定成立.故②錯誤.對③,,,,則成立.故③正確.對④,若,,則,或,又,則.故④正確.綜上,③④正確.故選:B【點睛】本題主要考查了根據(jù)線面、線線平行與垂直的性質(zhì)判斷命題真假的問題,需要根據(jù)題意舉出反例或者根據(jù)判定定理判定,屬于中檔題.9、B【解析】
直接由正三角形的性質(zhì)求出兩向量的模和夾角,由數(shù)量積定義計算.【詳解】∵點O是邊長為2的正三角形ABC的中心,∴,,∴.故選:B.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積的定義是解題關(guān)鍵.10、A【解析】
本題等價于求過BC直線的平面截長方體的面積的取值范圍?!驹斀狻块L方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍等價于,求過BC直線的平面截長方體的面積的取值范圍。由圖形知,,故選A.【點睛】將問題等價轉(zhuǎn)換為可視的問題。二、填空題:本大題共6小題,每小題5分,共30分。11、(1),;(2)125.【解析】
(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項為正,后面為負,再計算數(shù)列的前15項和.【詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【點睛】本題考查了等差數(shù)列,等比數(shù)列,絕對值和,判斷數(shù)列的正負分界處是解題的關(guān)鍵.12、0.2【解析】從1,2,3,4,5中任意取兩個不同的數(shù)共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10種.其中和為5的有(1,4),(2,3)2種.由古典概型概率公式知所求概率為=.13、10【解析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.14、【解析】
利用平面向量垂直的數(shù)量積關(guān)系可得,再利用數(shù)量積的坐標運算可得:,解方程即可.【詳解】因為,所以,整理得:,解得:【點睛】本題主要考查了平面向量垂直的坐標關(guān)系及方程思想,屬于基礎(chǔ)題.15、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結(jié),則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.16、【解析】試題分析:、、成等差數(shù)列考點:1.等差數(shù)列性質(zhì);2.等比數(shù)列通項公式三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)已知三邊的關(guān)系且有平方,考慮化簡式子構(gòu)成余弦定理即可。(2)觀察結(jié)論形似余弦定理,通過,則互補,則余弦值互為相反數(shù)聯(lián)系?!驹斀狻浚?)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)設(shè),,則在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【點睛】解三角形要注意觀察題干條件所給的形式,出現(xiàn)邊長平方一般會考慮用到余弦定理。正弦定理和余弦定理是我們解三角形的兩大常用工具,需要熟練運用。18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【詳解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即則:故:【點睛】本題主要考查了正弦定理與余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.19、(1);(2)【解析】
(1)根據(jù)向量的數(shù)量積公式、二倍角公式及輔助角公式將化簡為,然后利用三角函數(shù)的性質(zhì),即可求得的單調(diào)減區(qū)間;(2)由(1)及可求得,由可得,再結(jié)合余弦定理即可求得,進而可得的周長.【詳解】解:(1)所以函數(shù)的單調(diào)遞減區(qū)間為:(2),,又因在中,,,設(shè)的三個內(nèi)角所對的邊分別為,又,且,,則,所以的周長為.【點睛】本題考查平面向量的數(shù)量積公式,三角函數(shù)的二倍角公式、輔助角公式和三角函數(shù)的性質(zhì),以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解運算能力,屬于中檔題.20、(1);(2)5;-2【解析】
(1)根據(jù)二倍角公式和輔助角公式化簡即可(2)由求出的范圍,再根據(jù)函數(shù)圖像求最值即可【詳解】(1),,令,即單減區(qū)間為;(2)由,當(dāng)時,的最小值為:-2;當(dāng)時,的最大值為:5【點睛】本題考查三角函數(shù)解析式的化簡,函數(shù)基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上下消化道出血鑒別
- 《血葡萄糖檢測》課件
- 河北省張家口市橋西區(qū)2024-2025學(xué)年九年級上學(xué)期期末 歷史試題(含答案)
- 2024年土地登記代理人題庫附完整答案【奪冠系列】
- 單位管理制度展示大全職工管理十篇
- Unit 1 語篇組合提升練
- 單位管理制度展示大合集員工管理篇
- 全球資產(chǎn)配置資金流向月報(2024年12月):強美元下12月資金流出非美市場流入美股
- 菲仔紙行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2025小額貸款合同范本
- 2025年包鋼集團公司招聘筆試參考題庫含答案解析
- 內(nèi)蒙古呼和浩特市2024屆九年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 建筑材料采購授權(quán)委托書樣本
- 無人機職業(yè)生涯規(guī)劃
- 中藥飲片購進驗收記錄表格模板
- TCM遠紅外發(fā)展初析
- 滑坡穩(wěn)定性計算及滑坡推力計算
- 硅膠產(chǎn)品工藝流程圖
- 繼教脈圖分析 0
- 醫(yī)院各科室規(guī)章制度匯編
- 房地產(chǎn)開發(fā)企業(yè)土地增值稅清算政策與實務(wù)操作(成都市)解讀
評論
0/150
提交評論