




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省曹縣三桐中學2025屆高一數(shù)學第二學期期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為等差數(shù)列,,,則等于().A. B. C. D.2.某程序框圖如圖所示,若輸出的結果為,則判斷框內應填入的條件可以為()A. B. C. D.3.已知,則().A. B. C. D.4.在中,角的對邊分別為.若,,,則邊的大小為()A.3 B.2 C. D.5.在中,,,分別是角,,的對邊,且滿足,那么的形狀一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形6.已知圓錐的表面積為,且它的側面展開圖是一個半圓,則圓錐的底面半徑為A. B. C. D.()7.已知隨機變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.88.已知向量=(3,4),=(2,1),則向量與夾角的余弦值為()A. B. C. D.9.已知的模為1,且在方向上的投影為,則與的夾角為()A.30° B.60° C.120° D.150°10.已知,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.無限循環(huán)小數(shù)化成最簡分數(shù)為________12.已知一組數(shù)1,2,m,6,7的平均數(shù)為4,則這組數(shù)的方差為______.13.已知與之間的一組數(shù)據,則與的線性回歸方程必過點__________.14.已知為銳角,則_______.15.若,則______.16.已知三棱錐的底面是腰長為2的等腰直角三角形,側棱長都等于,則其外接球的體積為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列的前項和為,點均在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).18.(已知函數(shù).(I)求函數(shù)的最小正周期及在區(qū)間上的最大值和最小值;(II)若,求的值.19.已知函數(shù)的最小正周期為.將函數(shù)的圖象上各點的橫坐標變?yōu)樵瓉淼谋叮v坐標變?yōu)樵瓉淼谋?,得到函?shù)的圖象.(1)求的值及函數(shù)的解析式;(2)求的單調遞增區(qū)間及對稱中心20.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.21.設等比數(shù)列的最n項和,首項,公比.(1)證明:;(2)若數(shù)列滿足,,求數(shù)列的通項公式;(3)若,記,數(shù)列的前項和為,求證:當時,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用等差數(shù)列的通項公式,列出方程組,求出首項和公差,由此能求出.【詳解】解:為等差數(shù)列,,,,,,,,,.故選:【點睛】本題考查等差數(shù)列的第20項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.2、D【解析】
由已知可得,該程序是利用循環(huán)結構計算輸出變量S的值,模擬過程分別求出變量的變化情況可的結果.【詳解】程序在運行過程中,判斷框前的變量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此時應該結束循環(huán)體,并輸出S的值為26,所以判斷框應該填入條件為:故選D【點睛】本題主要考查了程序框圖,屬于基礎題.3、C【解析】
分子分母同時除以,利用同角三角函數(shù)的商關系化簡求值即可.【詳解】因為,所以,于是有,故本題選C.【點睛】本題考查了同角三角函數(shù)的商關系,考查了數(shù)學運算能力.4、A【解析】
直接利用余弦定理可得所求.【詳解】因為,所以,解得或(舍).故選A.【點睛】本題主要考查了余弦定理在解三角形中的應用,考查了一元二次方程的解法,屬于基礎題.5、C【解析】
由正弦定理,可得,.,或,或,即或,即三角形為等腰三角形或直角三角形,故選C.考點:1正弦定理;2正弦的二倍角公式.6、C【解析】解:7、B【解析】隨機變量服從正態(tài)分布,所以曲線關于對稱,且,由,可知,所以,故選B.8、A【解析】
由向量的夾角公式計算.【詳解】由已知,,.∴.故選A.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積公式是解題基礎.9、A【解析】
根據投影公式,直接得到結果.【詳解】,.故選A.【點睛】本題考查了投影公式,屬于簡單題型.10、C【解析】
根據輔助角公式即可.【詳解】由輔助角公式得所以,選C.【點睛】本題主要考查了輔助角公式的應用:,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎題型.12、【解析】
先根據平均數(shù)計算出的值,再根據方差的計算公式計算出這組數(shù)的方差.【詳解】依題意.所以方差為.故答案為:.【點睛】本小題主要考查平均數(shù)和方差的有關計算,考查運算求解能力,屬于基礎題.13、【解析】
根據線性回歸方程一定過樣本中心點,計算這組數(shù)據的樣本中心點,求出和的平均數(shù)即可求解.【詳解】由題意可知,與的線性回歸方程必過樣本中心點,,所以線性回歸方程必過.故答案為:【點睛】本題是一道線性回歸方程題目,需掌握線性回歸方程必過樣本中心點這一特征,屬于基礎題.14、【解析】
利用同角三角函數(shù)的基本關系得,再根據角度關系,利用誘導公式即可得答案.【詳解】∵且,∴;∵,∴.故答案為:.【點睛】本題考查同角三角函數(shù)的基本關系、誘導公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號問題.15、【解析】
,則,故答案為.16、【解析】
先判斷球心在上,再利用勾股定理得到半徑,最后計算體積.【詳解】三棱錐的底面是腰長為2的等腰直角三角形,側棱長都等于為中點,為外心,連接,平面球心在上設半徑為故答案為【點睛】本題考查了三棱錐外接球的體積,意在考查學生的空間想象能力和計算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)10【解析】
解:(I)依題意得,即.當n≥2時,;當所以.(II)由(I)得,故=.因此,使得<成立的m必須滿足,故滿足要求的最小正整數(shù)m為10.18、函數(shù)在區(qū)間上的最大值為2,最小值為-1【解析】試題分析:(1)將函數(shù)利用倍角公式和輔助角公式化簡為,再利用周期可得最小正周期,由找出對應范圍,利用正弦函數(shù)圖像可得值域;(2)先利用求出,再由角的關系展開后代入可得值.試題解析:(1)所以又所以由函數(shù)圖像知.(2)解:由題意而所以所以所以=.考點:三角函數(shù)性質;同角間基本關系式;兩角和的余弦公式19、(1),;(2)單調遞增區(qū)間為,,對稱中心為.【解析】
(1)整理可得:,利用其最小正周期為即可求得:,即可求得:,再利用函數(shù)圖象平移規(guī)律可得:,問題得解.(2)令,,解不等式即可求得的單調遞增區(qū)間;令,,解方程即可求得的對稱中心的橫坐標,問題得解.【詳解】解:(1),由,得.所以.于是圖象對應的解析式為.(2)由,得,所以函數(shù)的單調遞增區(qū)間為,.由,解得.所以的對稱中心為.【點睛】本題主要考查了二倍角公式、兩角和的正弦公式應用及三角函數(shù)性質,考查方程思想及轉化能力、計算能力,屬于中檔題。20、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結果試題解析:(1)證明:連結AC1交A1C于點F,則F為AC1中點又D是AB中點,連結DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積21、(1)證明見解析;(2);(3)證明見解析【解析】
(1)由已知且,利用等比數(shù)列的通項公式可得,利用等比數(shù)列的求和公式可證;
(2)由,可得,從而可得是等差數(shù)列,從而可求;(3)可得,利用錯位相減法可得,通過計算得,得數(shù)列為單調遞減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育交流合同范本
- 2024年中國太平洋人壽保險股份有限公司招聘筆試真題
- 買賣物品合同范本
- 2024年內蒙古興安盟實驗高中教師招聘考試真題
- 2024年納雍縣鴿子花農業(yè)有限公司招聘考試真題
- 農夫山泉公司勞動合同范本
- 創(chuàng)業(yè)投資協(xié)議合同范本
- 2024年河南省黃河科技學院附屬醫(yī)院招聘考試真題
- 公司系統(tǒng)服務合同范本
- 全體村民土地流轉合同范本
- (新版)老年人健康管理理論考試題庫(含答案)
- 感應加熱操作規(guī)程
- 最新小學二年級口算及豎式計算練習題
- 生產與運作管理-陳榮秋
- 病理生理學教學病生6休克課件
- 金雞冠的公雞繪本課件
- 日影朝向及長短
- 沙盤游戲治療(課堂PPT)
- (完整版)學生的自我評價的表格
- 樸素貝葉斯分類器完整
- 教育系統(tǒng)績效工資分配方案(共6頁)
評論
0/150
提交評論