版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濟(jì)南市師范大學(xué)附屬中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知直三棱柱的所有棱長都相等,為的中點(diǎn),則與所成角的余弦值為()A. B. C. D.2.已知正實(shí)數(shù)滿足,則的最小值()A.2 B.3 C.4 D.3.直線與圓相交于M,N兩點(diǎn),若.則的取值范圍是()A. B. C. D.4.設(shè),是定義在上的兩個(gè)周期函數(shù),的周期為,的周期為,且是奇函數(shù).當(dāng)時(shí),,,其中.若在區(qū)間上,函數(shù)有個(gè)不同的零點(diǎn),則的取值范圍是()A. B. C. D.5.,,是空間三條不同的直線,則下列命題正確的是A., B.,C.,,共面 D.,,共點(diǎn),,共面6.已知集合,則().A. B. C. D.7.已知.為等比數(shù)列的前項(xiàng)和,若,,則()A.31 B.32 C.63 D.648.甲、乙兩名選手參加歌手大賽時(shí),5名評委打的分?jǐn)?shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定9.已知曲線,如何變換可得到曲線()A.把上各點(diǎn)的橫坐標(biāo)伸長到原來的倍,再向右平移個(gè)單位長度B.把上各點(diǎn)的橫坐標(biāo)伸長到原來的倍,再向左平移個(gè)單位長度C.把上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個(gè)單位長度D.把上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向左平移個(gè)單位長度10.一個(gè)正方體內(nèi)接于一個(gè)球,過球心作一個(gè)截面,如圖所示,則截面的可能圖形是()A.①③④ B.②④ C.②③④ D.①②③二、填空題:本大題共6小題,每小題5分,共30分。11.己知為數(shù)列的前項(xiàng)和,且,則_____.12.已知,且關(guān)于的方程有實(shí)數(shù)根,則與的夾角的取值范圍是______.13.設(shè)數(shù)列滿足,且,則數(shù)列的前n項(xiàng)和_______________.14.若,則________.15.?dāng)?shù)列滿足:(且為常數(shù)),,當(dāng)時(shí),則數(shù)列的前項(xiàng)的和為________.16.函數(shù)的最小正周期是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,.(Ⅰ)求;(Ⅱ)若向量與垂直,求的值.18.已知,函數(shù)(其中),且圖象在軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,并過點(diǎn).(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)增區(qū)間.19.已知函數(shù),.(I)求函數(shù)的最小正周期.(II)求函數(shù)的單調(diào)遞增區(qū)間.(III)求函數(shù)在區(qū)間上的最小值和最大值.20.已知三棱錐中,,.若平面分別與棱相交于點(diǎn)且平面.求證:(1);(2).21.的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】
,當(dāng)且僅當(dāng),即,時(shí)的最小值為3.故選B.點(diǎn)睛:本題主要考查基本不等式.在用基本不等式求最值時(shí),應(yīng)具備三個(gè)條件:一正二定三相等.①一正:關(guān)系式中,各項(xiàng)均為正數(shù);②二定:關(guān)系式中,含變量的各項(xiàng)的和或積必須有一個(gè)為定值;③三相等:含變量的各項(xiàng)均相等,取得最值.3、A【解析】
可通過將弦長轉(zhuǎn)化為弦心距問題,結(jié)合點(diǎn)到直線距離公式和勾股定理進(jìn)行求解【詳解】如圖所示,設(shè)弦中點(diǎn)為D,圓心C(3,2),弦心距,又,由勾股定理可得,答案選A【點(diǎn)睛】圓與直線的位置關(guān)系解題思路常從兩點(diǎn)入手:弦心距、勾股定理。處理過程中,直線需化成一般式4、B【解析】
根據(jù)題意可知,函數(shù)和在上的圖象有個(gè)不同的交點(diǎn),作出兩函數(shù)圖象,即可數(shù)形結(jié)合求出.【詳解】作出兩函數(shù)的圖象,如圖所示:由圖可知,函數(shù)和在上的圖象有個(gè)不同的交點(diǎn),故函數(shù)和在上的圖象有個(gè)不同的交點(diǎn),才可以滿足題意.所以,圓心到直線的距離為,解得,因?yàn)閮牲c(diǎn)連線斜率為,所以,.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)的圖象應(yīng)用,函數(shù)性質(zhì)的應(yīng)用,函數(shù)的零點(diǎn)個(gè)數(shù)與兩函數(shù)圖象之間的交點(diǎn)個(gè)數(shù)關(guān)系的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)形結(jié)合能力,屬于中檔題.5、B【解析】
解:因?yàn)槿绻粭l直線平行于兩條垂線中的一條,必定垂直于另一條.選項(xiàng)A,可能相交.選項(xiàng)C中,可能不共面,比如三棱柱的三條側(cè)棱,選項(xiàng)D,三線共點(diǎn),可能是棱錐的三條棱,因此錯誤.選B.6、B【解析】
求解一元二次不等式的解集,化簡集合的表示,最后運(yùn)用集合交集的定義,結(jié)合數(shù)軸求出.【詳解】因?yàn)椋?,故本題選B.【點(diǎn)睛】本題考查了一元二次不等式的解法,考查了集合交集的運(yùn)算,正確求解一元二次不等式的解集、運(yùn)用數(shù)軸是解題的關(guān)鍵.7、C【解析】
首先根據(jù)題意求出和的值,再計(jì)算即可.【詳解】有題知:,解得,.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)以及前項(xiàng)和的求法,屬于簡單題.8、C【解析】
先求均值,再根據(jù)標(biāo)準(zhǔn)差公式求標(biāo)準(zhǔn)差,最后比較大小.【詳解】乙選手分?jǐn)?shù)的平均數(shù)分別為所以標(biāo)準(zhǔn)差分別為因此s1<s2,選C.【點(diǎn)睛】本題考查標(biāo)準(zhǔn)差,考查基本求解能力.9、D【解析】
用誘導(dǎo)公式把兩個(gè)函數(shù)名稱化為相同,然后再按三角函數(shù)圖象變換的概念判斷.【詳解】,∴可把的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向左平移個(gè)單位長度或先向左平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)可得的圖象,故選:D.【點(diǎn)睛】本題考查三角函數(shù)的圖象變換,解題時(shí)首先需要函數(shù)的前后名稱相同,其次平移變換與周期變換的順序不同時(shí),平移的單位有區(qū)別.向左平移個(gè)單位所得圖象的函數(shù)式為,而不是.10、A【解析】
分別當(dāng)截面平行于正方體的一個(gè)面時(shí),當(dāng)截面過正方體的兩條相交的體對角線時(shí),當(dāng)截面既不過體對角線也不平行于任一側(cè)面時(shí),進(jìn)行判定,即可求解.【詳解】由題意,當(dāng)截面平行于正方體的一個(gè)面時(shí)得③;當(dāng)截面過正方體的兩條相交的體對角線時(shí)得④;當(dāng)截面既不過正方體體對角線也不平行于任一側(cè)面時(shí)可能得①;無論如何都不能得②.故選A.【點(diǎn)睛】本題主要考查了正方體與球的組合體的截面問題,其中解答中熟記空間幾何體的結(jié)構(gòu)特征是解答此類問題的關(guān)鍵,著重考查了空間想象能力,以及推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)可知,得到數(shù)列為等差數(shù)列;利用等差數(shù)列前項(xiàng)和公式構(gòu)造方程可求得;利用等差數(shù)列通項(xiàng)公式求得結(jié)果.【詳解】由得:,即:數(shù)列是公差為的等差數(shù)列又,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、前項(xiàng)和公式的應(yīng)用,關(guān)鍵是能夠利用判斷出數(shù)列為等差數(shù)列,進(jìn)而利用等差數(shù)列中的相關(guān)公式來進(jìn)行求解.12、【解析】
先由得出,再根據(jù)即可求出與的夾角的取值范圍.【詳解】因?yàn)殛P(guān)于的方程有實(shí)數(shù)根,所以,即,設(shè)與的夾角為,所以,因?yàn)椋?,即與的夾角的取值范圍是【點(diǎn)睛】本題主要考查平面向量的夾角公式的應(yīng)用等,屬基礎(chǔ)題.13、【解析】令14、【解析】
先求,再代入求值得解.【詳解】由題得所以.故答案為【點(diǎn)睛】本題主要考查共軛復(fù)數(shù)和復(fù)數(shù)的模的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.15、【解析】
直接利用分組法和分類討論思想求出數(shù)列的和.【詳解】數(shù)列滿足:(且為常數(shù)),,當(dāng)時(shí),則,所以(常數(shù)),故,所以數(shù)列的前項(xiàng)為首項(xiàng)為,公差為的等差數(shù)列.從項(xiàng)開始,由于,所以奇數(shù)項(xiàng)為、偶數(shù)項(xiàng)為,所以,故答案為:【點(diǎn)睛】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項(xiàng)和公式,需熟記公式,同時(shí)也考查了分類討論的思想,屬于中檔題.16、;【解析】
利用余弦函數(shù)的最小正周期公式即可求解.【詳解】因?yàn)楹瘮?shù),所以,故答案為:【點(diǎn)睛】本題考查了含余弦函數(shù)的最小正周期,需熟記求最小正周期的公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的數(shù)量積的坐標(biāo)表示進(jìn)行計(jì)算;(Ⅱ)由垂直關(guān)系,得到坐標(biāo)間的等式關(guān)系,然后計(jì)算出參數(shù)的值.【詳解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量與垂直,∴∴,∴【點(diǎn)睛】已知,若,則有;已知,若,則有.18、(1);(2).【解析】
(1)根據(jù)向量的數(shù)量積得,結(jié)合,即可求解;(2)令即可求得增區(qū)間.【詳解】(1)由題圖象在軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,并過點(diǎn)所以,解得,,解得:,所以;(2)令函數(shù)的單調(diào)增區(qū)間為.【點(diǎn)睛】此題考查根據(jù)平面向量的數(shù)量積,求函數(shù)解析式,根據(jù)三角函數(shù)的頂點(diǎn)坐標(biāo)和曲線上的點(diǎn)的坐標(biāo)求參數(shù),利用整體代入法求單調(diào)區(qū)間.19、(I)的最小正周期;(II)的單調(diào)遞增區(qū)間為;(III);【解析】試題分析;(1)化函數(shù)f(x)為正弦型函數(shù),求出f(x)的最小正周期;(2)根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)增區(qū)間;(3)根據(jù)x的取值范圍求出2x+的取值范圍,從而求出f(x)的最值(I)因此,函數(shù)的最小正周期.(II)由得:.即函數(shù)的單調(diào)遞增區(qū)間為.(III)因?yàn)樗运?0、(1)證明見解析;(2)證明見解析.【解析】
(1)利用線面平行的性質(zhì)定理可得線線平行,最后利用平行公理可以證明出;(2)利用線面垂直的判定定理可以證明線面垂直,利用線面垂直的性質(zhì)可以證明線線垂直,利用平行線的性質(zhì),最后證明出.【詳解】證明(1)因?yàn)槠矫妫矫嫫矫?平面,所以有,同理可證出,根據(jù)平行公理,可得;(2)因?yàn)?,?平面,所以平面,而平面,所以,由(1)可知,所以.【點(diǎn)睛】本題考查了線面平行的性質(zhì)定理,線面垂直的判定定理、以及平行公理的應(yīng)用.21、(1);(2).【解析】
(1)利用正弦定理化簡題中等式,得到關(guān)于B的三角方程,最后根據(jù)A,B,C均為三角形內(nèi)角解得.(2)根據(jù)三角形面積公式,又根據(jù)正弦定理和得到關(guān)于的函數(shù),由于是銳角三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全新員工入職合同下載
- 2025廣告發(fā)布委托合同書版范本
- 全新房地產(chǎn)買賣合同范文下載
- 公司業(yè)務(wù)擔(dān)保合同
- 單位貨物采購合同格式
- 幼兒園股份合伙經(jīng)營合作合同書
- 2024年中考物理(安徽卷)真題詳細(xì)解讀及評析
- 地板磚購銷合同模板
- 拓寬知識面的重要性主題班會
- 2025如果合同標(biāo)的不合格怎么辦反擔(dān)保
- 浙教版八年級下冊科學(xué)第一章 電和磁整章思維導(dǎo)圖
- (正式版)SH∕T 3541-2024 石油化工泵組施工及驗(yàn)收規(guī)范
- 動物疫病傳染病防控培訓(xùn)制度
- 美團(tuán)代運(yùn)營合同模板
- 初中英語七選五經(jīng)典5篇(附帶答案)
- GB/T 43676-2024水冷預(yù)混低氮燃燒器通用技術(shù)要求
- 特種設(shè)備檢驗(yàn)現(xiàn)場事故案例分析
- 2023-2024學(xué)年西安市高二數(shù)學(xué)第一學(xué)期期末考試卷附答案解析
- 關(guān)于教師誦讀技能培訓(xùn)課件
- 化學(xué)品使用人員培訓(xùn)課程
- 【京東倉庫出庫作業(yè)優(yōu)化設(shè)計(jì)13000字(論文)】
評論
0/150
提交評論