版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆云南省楚雄州民族實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個(gè)單位長度B.向左平移個(gè)單位長度C.向右平移個(gè)單位長度D.向右平移個(gè)單位長度2.若直線平分圓的周長,則的值為()A.-1 B.1 C.3 D.53.設(shè)滿足約束條件,則的最大值為()A.7 B.6 C.5 D.34.如果將直角三角形的三邊都增加1個(gè)單位長度,那么新三角形()A.一定是銳角三角形 B.一定是鈍角三角形C.一定是直角三角形 D.形狀無法確定5.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,a2+a4+a6=12,則S7=()A.20 B.28 C.36 D.46.已知且,則為()A. B. C. D.7.在中,,,成等差數(shù)列,,則的形狀為()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等邊三角形8.中,,則()A.5 B.6 C. D.89.如圖,四棱錐的底面為平行四邊形,,則三棱錐與三棱錐的體積比為()A. B. C. D.10.設(shè)m,n是兩條不同的直線,α?A.若m⊥β,n⊥β?,?n⊥α,則m⊥αC.若m⊥n,?n∥α,則m⊥α D.若m⊥n二、填空題:本大題共6小題,每小題5分,共30分。11.若等差數(shù)列的前項(xiàng)和,且,則______________.12.若函數(shù),的最大值為,則的值是________.13.已知向量(1,2),(x,4),且∥,則_____.14.已知數(shù)列的前項(xiàng)和滿足,則______.15.為等比數(shù)列,若,則_______.16.把“五進(jìn)制”數(shù)轉(zhuǎn)化為“十進(jìn)制”數(shù)是_____________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中,)的最小正周期為,且圖象經(jīng)過點(diǎn)(1)求函數(shù)的解析式:(2)求函數(shù)的單調(diào)遞增區(qū)間.18.已知數(shù)列滿足,.(1)若,求證:數(shù)列為等比數(shù)列.(2)若,求.19.已知函數(shù),求其定義域.20.設(shè)等差數(shù)列的公差為d,前項(xiàng)和為,等比數(shù)列的公比為.已知,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)當(dāng)時(shí),記,求數(shù)列的前項(xiàng)和.21.已知圓C:(x-1)2(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程;(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
試題分析:將函數(shù)的圖象向右平移,可得,故選D.考點(diǎn):圖象的平移.2、D【解析】
求出圓的圓心坐標(biāo),由直線經(jīng)過圓心代入解得.【詳解】解:所以的圓心為因?yàn)橹本€平分圓的周長所以直線過圓心,即解得,故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,屬于基礎(chǔ)題.3、A【解析】
考點(diǎn):簡單線性規(guī)劃.專題:計(jì)算題.分析:首先作出可行域,再作出直線l0:y=-3x,將l0平移與可行域有公共點(diǎn),直線y=-3x+z在y軸上的截距最大時(shí),z有最大值,求出此時(shí)直線y=-3x+z經(jīng)過的可行域內(nèi)的點(diǎn)A的坐標(biāo),代入z=3x+y中即可.解:如圖,作出可行域,作出直線l0:y=-3x,將l0平移至過點(diǎn)A(3,-2)處時(shí),函數(shù)z=3x+y有最大值1.故選A.點(diǎn)評:本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合思想.解答的步驟是有兩種方法:一種是:畫出可行域畫法,標(biāo)明函數(shù)幾何意義,得出最優(yōu)解.另一種方法是:由約束條件畫出可行域,求出可行域各個(gè)角點(diǎn)的坐標(biāo),將坐標(biāo)逐一代入目標(biāo)函數(shù),驗(yàn)證,求出最優(yōu)解.4、A【解析】
直角三角形滿足勾股定理,,再比較,,大小關(guān)系即可.【詳解】設(shè)直角三角形滿足,則,又為新三角形最長邊,所以所以最大角為銳角,所以三角形為銳角三角形.故選A【點(diǎn)睛】判斷三角形形狀一般可通過余弦定理判斷,若有一角的余弦值小于零則為鈍角三角形,等于零則為直角三角形,最大角的余弦值大于零則為銳角三角形,屬于較易題目.5、B【解析】
由等差數(shù)列的性質(zhì)計(jì)算.【詳解】由題意,,∴.故選B.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的性質(zhì)可以很快速地求解等差數(shù)列的問題.在等差數(shù)列中,正整數(shù)滿足,則,特別地若,則;.6、B【解析】由題意得,因?yàn)?,即,所以,又,又,且,所以,故選B.7、B【解析】
根據(jù)等差中項(xiàng)以及余弦定理即可.【詳解】因?yàn)椋?,成等差?shù)列,得為直角三角形為等腰直角三角形,所以選擇B【點(diǎn)睛】本題主要考查了等差中項(xiàng)和余弦定理,若為等差數(shù)列,則,屬于基礎(chǔ)題.8、D【解析】
根據(jù)余弦定理,可求邊長.【詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【點(diǎn)睛】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎(chǔ)題型.9、C【解析】
先由題意,得到,推出,再由推出,由,進(jìn)而可得出結(jié)果.【詳解】因?yàn)榈酌鏋槠叫兴倪呅?,所以,所以,因?yàn)?,所以,所以,所以,因?故選C【點(diǎn)睛】本題主要考查棱錐體積之比,熟記棱錐的體積公式,以及等體積法的應(yīng)用即可,屬于??碱}型.10、A【解析】
依據(jù)立體幾何有關(guān)定理及結(jié)論,逐個(gè)判斷即可?!驹斀狻緼正確:利用“垂直于同一個(gè)平面的兩條直線平行”及“兩條直線有一條垂直于一個(gè)平面,則另一條也垂直于該平面”,若m⊥β且n⊥β?,則m//n,又n⊥α,所以m⊥αB錯(cuò)誤:若m∥β,?,?β⊥α,則C錯(cuò)誤:若m⊥n,?n∥α,則m可能垂直于平面α,也可能平行于平面α,還可能在平面D錯(cuò)誤:若m⊥n?,?n⊥β?,?β⊥α,則【點(diǎn)睛】本題主要考查立體幾何中的定理和結(jié)論,意在考查學(xué)生幾何定理掌握熟練程度。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)等差數(shù)列的公差為,根據(jù)題意建立和的方程組,解出這兩個(gè)量,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,由題意得,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列中項(xiàng)的計(jì)算,解題的關(guān)鍵就是要建立首項(xiàng)和公差的方程組,利用這兩個(gè)基本量來求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12、【解析】
利用兩角差的正弦公式化簡函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【點(diǎn)睛】本題主要考查兩角差的正弦公式的應(yīng)用,正弦函數(shù)的定義域和最值,屬于基礎(chǔ)題.13、.【解析】
根據(jù)求得,從而可得,再求得的坐標(biāo),利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點(diǎn)睛】本題主要考查了向量平行關(guān)系的應(yīng)用,以及向量的減法和向量的模的計(jì)算,其中解答中熟記向量的平行關(guān)系,以及向量的坐標(biāo)運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、5【解析】
利用求得,進(jìn)而求得的值.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí)上式也滿足,故的通項(xiàng)公式為,故.【點(diǎn)睛】本小題主要考查已知求,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】
將這兩式中的量全部用表示出來,正好有兩個(gè)方程,兩個(gè)未知數(shù),解方程組即可求出。【詳解】相當(dāng)于,相當(dāng)于,上面兩式相除得代入就得,【點(diǎn)睛】基本量法是解決數(shù)列計(jì)算題最重要的方法,即將條件全部用首項(xiàng)和公比表示,列方程,解方程即可求得。16、194【解析】由.故答案為:194.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】
(1)根據(jù)最小正周期可求得;代入點(diǎn),結(jié)合的范圍可求得,從而得到函數(shù)解析式;(2)令,解出的范圍即為所求的單調(diào)遞增區(qū)間.【詳解】(1)最小正周期過點(diǎn),,解得:,的解析式為:(2)由,得:,的單調(diào)遞增區(qū)間為:,【點(diǎn)睛】本題考查根據(jù)三角函數(shù)性質(zhì)求解函數(shù)解析式、正弦型函數(shù)單調(diào)區(qū)間的求解;關(guān)鍵是能夠采用整體對應(yīng)的方式來利用正弦函數(shù)的最值和單調(diào)區(qū)間求解正弦型函數(shù)的解析式和單調(diào)區(qū)間.18、(1)證明見解析(2)答案見解析【解析】
(1)證明即可;(2)化簡,討論,和即可求解【詳解】因?yàn)?,所以,所以.又所以?shù)列是以3為首項(xiàng),9為公比的等比數(shù)列.(2)因?yàn)?,所以,所以:?dāng)時(shí),當(dāng)時(shí),.當(dāng)時(shí),.【點(diǎn)睛】本題考查等比數(shù)列的證明,極限的運(yùn)算,注意分類討論的應(yīng)用,是中檔題19、【解析】
由使得分式和偶次根式有意義的要求可得到一元二次不等式,解不等式求得結(jié)果.【詳解】由題意得:,即,解得:定義域?yàn)椤军c(diǎn)睛】本題考查具體函數(shù)定義域的求解問題,關(guān)鍵是明確使得分式和偶次根式有意義的基本要求,由此構(gòu)造不等式求得結(jié)果.20、(1)見解析(2)【解析】
(1)利用前10項(xiàng)和與首項(xiàng)、公差的關(guān)系,聯(lián)立方程組計(jì)算即可;(2)當(dāng)d>1時(shí),由(1)知cn,寫出Tn、Tn的表達(dá)式,利用錯(cuò)位相減法及等比數(shù)列的求和公式,計(jì)算即可.【詳解】解:(1)設(shè)a1=a,由題意可得,解得,或,當(dāng)時(shí),an=2n﹣1,bn=2n﹣1;當(dāng)時(shí),an(2n+79),bn=9?;(2)當(dāng)d>1時(shí),由(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)模擬考核試卷含答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)考前沖刺試卷A卷含答案
- 二年級數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)集錦
- (中職組)2019年全國職業(yè)院校技能大賽電子電路裝調(diào)與應(yīng)用
- 2024供應(yīng)商長期合作協(xié)議參考格式
- ICP資質(zhì)申請咨詢與服務(wù)協(xié)議
- 2024安全禽蛋買賣協(xié)議范本
- 2024年磚瓦行業(yè)材料買賣協(xié)議范本
- 2024礦石運(yùn)輸承包具體協(xié)議樣式
- 房產(chǎn)中介2024居間協(xié)議樣式
- 河北省石家莊市第四十一中學(xué)2023-2024學(xué)年八年級上學(xué)期期中數(shù)學(xué)試題(解析版)
- 2023-2024學(xué)年全國初中八年級上英語人教版期中考卷(含答案解析)
- 2024化妝品營銷策劃方案
- 2024-2025學(xué)年高二上學(xué)期期中考試地理試題(含答案) 選擇性必修一第1-3章
- 山東省濟(jì)南市章丘區(qū)2023-2024學(xué)年三年級上學(xué)期語文11月期中試卷
- 中國中煤華東分公司招聘筆試題庫2024
- 炎德英才大聯(lián)考2025屆高三第二次模擬考試物理試卷含解析
- 《人工智能基礎(chǔ)》課件-AI的前世今生:她從哪里來
- 幼兒園中班社會《兔子先生去散步》課件
- 人教課標(biāo)解析新時(shí)代教育理念
- 品牌授權(quán)收費(fèi)合同模板
評論
0/150
提交評論