版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省六安二中、霍邱一中、金寨一中高三第三次測評新高考數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1802.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.3.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.4.為研究語文成績和英語成績之間是否具有線性相關關系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據(jù)圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值5.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切6.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.97.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.28.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)的模為()A. B.4 C.2 D.9.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內(nèi)容是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,例如:,,,那么在不超過18的素數(shù)中隨機選取兩個不同的數(shù),其和等于16的概率為()A. B. C. D.10.已知復數(shù),則的虛部為()A. B. C. D.111.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.12.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.14.已知函數(shù)與的圖象上存在關于軸對稱的點,則的取值范圍為_____.15.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)為________.16.已知向量=(-4,3),=(6,m),且,則m=__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.18.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.19.(12分)設函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.21.(12分)已知函數(shù),曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.22.(10分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.2、B【解析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質分析,常見方法為排除法.3、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.4、B【解析】
根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).5、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關系,屬于基礎題.6、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.7、B【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.8、D【解析】
由復數(shù)的綜合運算求出,再寫出其共軛復數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數(shù)的運算,考查共軛復數(shù)與模的定義,屬于基礎題.9、B【解析】
先求出從不超過18的素數(shù)中隨機選取兩個不同的數(shù)的所有可能結果,然后再求出其和等于16的結果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素數(shù)有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數(shù)共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題不可以列舉出所有事件但可以用分步計數(shù)得到,屬于基礎題.10、C【解析】
先將,化簡轉化為,再得到下結論.【詳解】已知復數(shù),所以,所以的虛部為-1.故選:C【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.11、A【解析】
先將函數(shù)解析式化簡為,結合題意可求得切點及其范圍,根據(jù)導數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質的綜合應用,由交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.12、D【解析】
利用導數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數(shù)的幾何意義,考查運算求解能力,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由可知R為中點,設,由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設,則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以OQ為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數(shù)形結合能力和計算能力,難度較難.14、【解析】
兩函數(shù)圖象上存在關于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構造函數(shù),求導,求出單調(diào)區(qū)間,利用函數(shù)性質得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設函數(shù),其導數(shù),又由,可得:當時,為減函數(shù),當時,為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點問題的拓展.由于函數(shù)的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉化為函數(shù)問題解決.此類問題的切入點是借助函數(shù)的零點,結合函數(shù)的圖象,采用數(shù)形結合思想加以解決.15、【解析】
利用復數(shù)的乘法運算求出,再利用共軛復數(shù)的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復數(shù)的四則運算以及共軛復數(shù)的概念,屬于基礎題.16、8.【解析】
利用轉化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數(shù)量積、平面向量的垂直以及轉化與化歸思想的應用.屬于容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)1【解析】
(1)選②,③.可得,結合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當時,有最大值1.【點睛】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題.18、(1)7(2)14【解析】
(1)在中,,可得,結合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點睛】本題主要考查了正弦定理和余弦定理解三角形,解題關鍵是掌握正弦定理邊化角,考查了分析能力和計算能力,屬于中檔題.19、(1)整數(shù)的最大值為;(2)見解析.【解析】
(1)將不等式變形為,構造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結論得到,利用不等式的基本性質可證得結論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當時,有,,所以,函數(shù)在上單調(diào)遞增;當時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導數(shù)在函數(shù)單調(diào)性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.20、(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】
(1)①求導可得,再分別求解與的解集,結合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結論,求出的表達式,再分與兩種情況,結合函數(shù)的單調(diào)性分析的范圍即可.(2)求導分析的單調(diào)性,再結合單調(diào)性,設去絕對值化簡可得,再構造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因為,故,,由知在上單調(diào)遞增,,若由可得x1,因為,所以,由在上單調(diào)遞增,綜上.時,,在上單調(diào)遞減,不妨設由(1)在上單調(diào)遞減,由,可得,所以,令,,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點睛】本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時也考查了利用導數(shù)求解函數(shù)不等式以及構造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.21、(Ⅰ),(Ⅱ)見解析【解析】
(1)根據(jù)導數(shù)的運算法則,求出函數(shù)的導數(shù),利用切線方程求出切線的斜率及切點,利用函數(shù)在切點處的導數(shù)值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉化為函數(shù),即將不等式右邊式子左移,得,構造函數(shù)并判斷其符號,這里應注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當時,,所以,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論