版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆天津市武清區(qū)數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線x-2y+2=0關于直線x=1對稱的直線方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=02.如圖,給出的是的值的一個程序框圖,判斷框內(nèi)應填入的條件是()A. B. C. D.3.直線的傾斜角的大小為()A. B. C. D.4.下列各角中,與126°角終邊相同的角是()A. B. C. D.5.若關于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)6.已知a=logA.a(chǎn)<b<c B.a(chǎn)<c<b C.c<a<b D.b<c<a7.在中,,,,則()A. B.或 C.或 D.8.在中,,,則()A.或 B. C. D.9.已知向量,滿足,和的夾角為,則()A. B. C. D.110.已知表示三條不同的直線,表示兩個不同的平面,下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知P1(x1,y1),P2(x2,y2)是以原點O為圓心的單位圓上的兩點,∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_____.12.函數(shù)是定義域為R的奇函數(shù),當時,則的表達式為________.13.在矩形中,,現(xiàn)將矩形沿對角線折起,則所得三棱錐外接球的體積是________.14.__________.15._______________.16.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在銳角中,角,,的對邊分別為,,,若.(1)求角;(2)若,則周長的取值范圍.18.已知函數(shù)是指數(shù)函數(shù).(1)求的表達式;(2)判斷的奇偶性,并加以證明(3)解不等式:.19.如圖為某區(qū)域部分交通線路圖,其中直線,直線l與、、都垂直,垂足分別是點A、點B和點C(高速線右側邊緣),直線與、與的距離分別為1米、2千米,點M和點N分別在直線和上,滿足,記.(1)若,求AM的長度;(2)記的面積為,求的表達式,并問為何值時,有最小值,并求出最小值;(3)求的取值范圍.20.某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,取).(1)若要求6年內(nèi)樹木的高度超過5米,你會選擇哪種樹木?為什么?(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?21.已知向量,(1)若,求;(2)若,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
所求直線的斜率與直線x-2y+2=0的斜率互為相反數(shù),且在x=1處有公共點,求解即可?!驹斀狻恐本€x-2y+2=0與直線x=1的交點為P1,3因為直線x-2y+2=0的斜率為12,所以所求直線的斜率為-故所求直線方程為y-32=-故答案為A.【點睛】本題考查了直線的斜率,直線的方程,直線關于直線的對稱問題,屬于基礎題。2、B【解析】試題分析:由題意得,執(zhí)行上式的循環(huán)結構,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;,第次循環(huán):,此時終止循環(huán),輸出結果,所以判斷框中,添加,故選B.考點:程序框圖.3、B【解析】
由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選.4、B【解析】
寫出與126°的角終邊相同的角的集合,取k=1得答案.【詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}.取k=1,可得α=486°.∴與126°的角終邊相同的角是486°.故選B.【點睛】本題考查終邊相同角的計算,是基礎題.5、B【解析】
由題意,得出a≠0,再分析不等式開口和判別式,可得結果.【詳解】由題,因為為一元二次不等式,所以a≠0又因為ax所以a>0Δ=故選B【點睛】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關鍵,屬于基礎題.6、B【解析】
運用中間量0比較a?,?c【詳解】a=log20.2<log21=0,【點睛】本題考查指數(shù)和對數(shù)大小的比較,滲透了直觀想象和數(shù)學運算素養(yǎng).采取中間變量法,利用轉(zhuǎn)化與化歸思想解題.7、B【解析】
利用正弦定理求出,然后利用三角形的內(nèi)角和定理可求出.【詳解】由正弦定理得,得,,,則或.當時,由三角形的內(nèi)角和定理得;當時,由三角形的內(nèi)角和定理得.因此,或.故選B.【點睛】本題考查利用正弦定理和三角形的內(nèi)角和定理求角,解題時要注意大邊對大角定理來判斷出角的大小關系,考查計算能力,屬于基礎題.8、C【解析】
由正弦定理計算即可?!驹斀狻坑深}根據(jù)正弦定理可得即,解得,所以為或,又因為,所以為故選C.【點睛】本題考查正弦定理,屬于簡單題。9、B【解析】
由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】由題意可得.故選:B.【點睛】本題主要考查平面向量的數(shù)量積公式,屬基礎題.10、D【解析】
利用線面平行、線面垂直的判定定理與性質(zhì)依次對選項進行判斷,即可得到答案.【詳解】對于A,當時,則與不平行,故A不正確;對于B,直線與平面平行,則直線與平面內(nèi)的直線有兩種關系:平行或異面,故B不正確;對于C,若,則與不垂直,故C不正確;對于D,若兩條直線垂直于同一個平面,則這兩條直線平行,故D正確;故答案選D【點睛】本題考查空間中直線與直線、直線與平面位置關系相關定理的應用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、-【解析】
先利用平面向量數(shù)量積的定義和坐標運算得到,再利用兩角和的正弦公式和平方關系進行求解.【詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【點睛】本題主要考查平面向量的數(shù)量積定義和坐標運算、兩角和的正弦公式,意在考查學生的邏輯思維能力和基本運算能力,屬于中檔題.12、【解析】試題分析:當時,,,因是奇函數(shù),所以,是定義域為R的奇函數(shù),所以,所以考點:函數(shù)解析式、函數(shù)的奇偶性13、【解析】
取的中點,連接,三棱錐外接球的半徑再計算體積.【詳解】如圖,取的中點,連接.由題意可得,則所得三棱錐外接球的半徑,其體積為.故答案為【點睛】本題考查了三棱錐的外切球體積,計算是解題的關鍵.14、【解析】
在分式的分子和分母上同時除以,然后利用極限的性質(zhì)來進行計算.【詳解】,故答案為:.【點睛】本題考查數(shù)列極限的計算,解題時要熟悉一些常見的極限,并充分利用極限的性質(zhì)來進行計算,考查計算能力,屬于基礎題.15、2【解析】
利用裂項求和法將化簡為,再求極限即可.【詳解】令...故答案為:【點睛】本題主要考查數(shù)列求和中的列項求和,同時考查了極限的求法,屬于中檔題.16、【解析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用切化成弦和余弦定理對等式進行化簡,得角的正弦值;(2)利用成正弦定理把邊化成角,從而實現(xiàn)的周長用角B的三角函數(shù)進行表示,即周長,再根據(jù)銳角三角形中角,求得函數(shù)值域.【詳解】(1)由,得到,又,所以.(2),,設周長為,由正弦定理知,由合分比定理知,即,,即.又因為為銳角三角形,所以.,周長.【點睛】對運動變化問題,首先要明確變化的量是什么?或者選定什么量為變量?然后,利用函數(shù)與方程思想,把所求的目標表示成關于變量的函數(shù),再研究函數(shù)性質(zhì)進行問題求解.18、(1)(2)見證明;(3)【解析】
(1)根據(jù)指數(shù)函數(shù)定義得到,檢驗得到答案.(2),判斷關系得到答案.(3)利用函數(shù)的單調(diào)性得到答案.【詳解】解:(1)∵函數(shù)是指數(shù)函數(shù),且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函數(shù);(3)不等式:,以2為底單調(diào)遞增,即,∴,解集為.【點睛】本題考查了函數(shù)的定義,函數(shù)的奇偶性,解不等式,意在考查學生的計算能力.19、(1);(2),當時,;(3).【解析】
(1),,,由即可得解;(2)用含有的式子表示出和,得出,根據(jù)的范圍得出的最小值;(3)用含有的式子表示出,利用三角恒等變換和正弦函數(shù)的值域得出答案.【詳解】(1)由題意可知:,即,,所以;(2),,,,,,,時,取得最大值1,;(3),由題意可知,令,.【點睛】本題考查三角函數(shù)的綜合應用,考查邏輯思維能力和計算能力,考查對基本知識的掌握,考查分析能力,屬于中檔題.20、(1)選擇C;(2)第4或第5年.【解析】
(1)根據(jù)已知求出三種樹木六年末的高度,判斷得解;(2)設為第年內(nèi)樹木生長的高度,先求出,設,則,.再利用分析函數(shù)的單調(diào)性,分析函數(shù)的圖像得解.【詳解】(1)由題意可知,A、B、C三種樹木隨著時間的增加,高度也在增加,6年末:A樹木的高度為(米):B樹木的高度為(米):C樹木的高度為(米),所以選擇C樹木.(2)設為第年內(nèi)樹木生長的高度,則,所以,,.設,則,.令,因為在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),所以當時,取得最小值,從而取得最大值,此時,解得,因為,,故的可能值為3或4,又,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 脾胃虛弱動畫冬病夏治
- 大叔爺爺課件教學課件
- 2024年分子篩項目投資申請報告代可行性研究報告
- 物聯(lián)網(wǎng)畢業(yè)設計論文
- 龍蝦的課件教學課件
- 牙體牙髓病常用藥物
- 2.1.2碳酸鈉和碳酸氫鈉 課件高一上學期化學人教版(2019)必修第一冊
- 糖尿病胰島素注射治療
- 新公司企業(yè)規(guī)劃
- 合唱團說課稿
- 2024-2030年中國天然蜂蜜市場競爭狀況與盈利前景預測報告
- 文書模板-《企業(yè)防靜電方案》
- 油氣田開發(fā)工程車輛租賃合同
- 中國廚房電器行業(yè)消費態(tài)勢及銷售狀況分析研究報告(2024-2030版)
- 冬季施工惡劣天氣應急預案
- 海南省海口市海南省華僑中學2024-2025年八年級上期中考試物理試題(含答案)
- 《江西二年級數(shù)學上學期期中試卷全解析》
- 江蘇省揚州市江都區(qū)2024-2025學年七年級上學期第一次月考數(shù)學試卷
- 2007債券市場年度分析報告
- 冬季傳染病預防-(課件)-小學主題班會課件
- 2024年秋新北師大版數(shù)學一年級上冊課件 第四單元 一起做游戲
評論
0/150
提交評論