版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省孝感市七校教學(xué)聯(lián)盟高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)是公比為的無窮等比數(shù)列,若的前四項(xiàng)之和等于第五項(xiàng)起以后所有項(xiàng)之和,則數(shù)列是()A.公比為的等比數(shù)列B.公比為的等比數(shù)列C.公比為或的等比數(shù)列D.公比為或的等比數(shù)列2.已知是等差數(shù)列的前項(xiàng)和,.若對(duì)恒成立,則正整數(shù)構(gòu)成的集合是()A. B. C. D.3.若線性方程組的增廣矩陣是5b1102bA.1 B.2 C.3 D.44.某產(chǎn)品的廣告費(fèi)用(單位:萬元)與銷售額(單位:萬元)的統(tǒng)計(jì)數(shù)據(jù)如下表:根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售為()A.63.6萬元 B.65.5萬元C.67.7萬元 D.72.0萬元5.已知圓O1:x2+y2=1與圓O2:(x﹣3)2+(x+4)2=16,則圓O1與圓O2的位置關(guān)系為()A.外切 B.內(nèi)切 C.相交 D.相離6.?dāng)?shù)列1,,,…,的前n項(xiàng)和為A. B. C. D.7.已知β為銳角,角α的終邊過點(diǎn)(3,4),sin(α+β)=,則cosβ=()A. B. C. D.或8.在中,分別為角的對(duì)邊,若,且,則邊=()A. B. C. D.9.根據(jù)頻數(shù)分布表,可以估計(jì)在這堆蘋果中,質(zhì)量大于130克的蘋果數(shù)約占蘋果總數(shù)的()分組頻數(shù)13462A. B. C. D.10.在直角中,,線段上有一點(diǎn),線段上有一點(diǎn),且,若,則()A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若實(shí)數(shù)滿足,,則__________.12.方程,的解集是__________.13.已知,是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量滿足,則的最大值是.14.有6根細(xì)木棒,其中較長(zhǎng)的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長(zhǎng)的棱所在的直線所成的角的余弦值為.15.若復(fù)數(shù)滿足(為虛數(shù)單位),則__________.16.已知正數(shù)、滿足,則的最大值為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是圓的直徑,垂直圓所在的平面,是圓上任一點(diǎn).求證:平面⊥平面.18.如圖,三棱柱的側(cè)面是邊長(zhǎng)為的菱形,,且.(1)求證:;(2)若,當(dāng)二面角為直二面角時(shí),求三棱錐的體積.19.的內(nèi)角所對(duì)的邊分別為,且.(1)求角;(2)若,且的面積為,求的值.20.如圖,已知四棱錐,側(cè)面是正三角形,底面為邊長(zhǎng)2的菱形,,.(1)設(shè)平面平面,求證:;(2)求多面體的體積;(3)求二面角的余弦值.21.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)題意可得,帶入等比數(shù)列前和即可解決。【詳解】根據(jù)題意,若的前四項(xiàng)之和等于第五項(xiàng)起以后所有項(xiàng)之和,則,又由是公比為的無窮等比數(shù)列,則,變形可得,則,數(shù)列為的奇數(shù)項(xiàng)組成的數(shù)列,則數(shù)列為公比為的等比數(shù)列;故選:B.【點(diǎn)睛】本題主要考查了利用等比數(shù)列前項(xiàng)和計(jì)算公比,屬于基礎(chǔ)題。2、A【解析】
先分析出,即得k的值.【詳解】因?yàn)橐驗(yàn)樗?所以,所以正整數(shù)構(gòu)成的集合是.故選A【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的最小值的求法,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.3、C【解析】
由題意得5×3421+【詳解】由題意得5×3421+解得b1則b2【點(diǎn)睛】本題主要考查了線性方程組的解法,以及增廣矩陣的概念,考查運(yùn)算能力,屬于中檔題.4、B【解析】
試題分析:,回歸直線必過點(diǎn),即.將其代入可得解得,所以回歸方程為.當(dāng)時(shí),所以預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為65.5萬元考點(diǎn):回歸方程5、A【解析】
先求出兩個(gè)圓的圓心和半徑,再根據(jù)它們的圓心距等于半徑之和,可得兩圓相外切.【詳解】圓的圓心為,半徑等于1,圓的圓心為,半徑等于4,它們的圓心距等于,等于半徑之和,兩個(gè)圓相外切.故選A.【點(diǎn)睛】判斷兩圓的位置關(guān)系時(shí)常用幾何法,即利用兩圓圓心之間的距離與兩圓半徑之間的關(guān)系,一般不采用代數(shù)法.6、B【解析】
數(shù)列為,則所以前n項(xiàng)和為.故選B7、B【解析】
由題意利用任意角的三角函數(shù)的定義求得sinα和cosα,再利用同角三角函數(shù)的基本關(guān)系求得cos(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【詳解】β為銳角,角α的終邊過點(diǎn)(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β為鈍角,∴cos(α+β),則cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα??,故選B.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】
由利用正弦定理化簡(jiǎn),再利用余弦定理表示出cosA,整理化簡(jiǎn)得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡(jiǎn)得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點(diǎn)睛】此題考查了正弦、余弦定理,熟練掌握定理,準(zhǔn)確計(jì)算是解本題的關(guān)鍵,是中檔題9、C【解析】
根據(jù)頻數(shù)分布表計(jì)算出質(zhì)量大于130克的蘋果的頻率,由此得出正確選項(xiàng).【詳解】根據(jù)頻數(shù)分布表可知,所以質(zhì)量大于克的蘋果數(shù)約占蘋果總數(shù)的.故選:C【點(diǎn)睛】本小題主要考查頻數(shù)分析表的閱讀與應(yīng)用,屬于基礎(chǔ)題.10、D【解析】
依照題意采用解析法,建系求出目標(biāo)向量坐標(biāo),用數(shù)量積的坐標(biāo)表示即可求出結(jié)果.【詳解】如圖,以A為原點(diǎn),AC,AB所在直線分別為軸建系,依題設(shè)A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故選D.【點(diǎn)睛】本題主要考查解析法在向量中的應(yīng)用,意在考查學(xué)生數(shù)形結(jié)合的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點(diǎn)睛】本題考查反正弦函數(shù),解題時(shí)注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.12、【解析】
用正弦的二倍角公式展開,得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點(diǎn)睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.13、【解析】
,,是平面內(nèi)兩個(gè)相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內(nèi)兩個(gè)相互垂直的單位向量∴,即,所以當(dāng)時(shí),即與共線時(shí),取得最大值為,故答案為.14、【解析】
分較長(zhǎng)的兩條棱所在直線相交,和較長(zhǎng)的兩條棱所在直線異面兩種情況討論,結(jié)合三棱錐的結(jié)構(gòu)特征,即可求出結(jié)果.【詳解】當(dāng)較長(zhǎng)的兩條棱所在直線相交時(shí),如圖所示:不妨設(shè),,,所以較長(zhǎng)的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時(shí)較長(zhǎng)的兩條棱所在直線所成角的余弦值為;當(dāng)較長(zhǎng)的兩條棱所在直線異面時(shí),不妨設(shè),,則,取CD的中點(diǎn)為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以O(shè)A+OB<AB,不能構(gòu)成三角形。所以此情況不存在。故答案為:.【點(diǎn)睛】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結(jié)構(gòu)特征即可,屬于??碱}型.15、【解析】分析:由復(fù)數(shù)的除法運(yùn)算可得解.詳解:由,得.故答案為:.點(diǎn)睛:本題考查了復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.16、【解析】
直接利用均值不等式得到答案.【詳解】,當(dāng)即時(shí)等號(hào)成立.故答案為:【點(diǎn)睛】本題考查了均值不等式,意在考查學(xué)生的計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析【解析】
先證直線平面,再證平面⊥平面.【詳解】證明:∵是圓的直徑,是圓上任一點(diǎn),,,平面,平面,,又,平面,又平面,平面⊥平面.【點(diǎn)睛】本題考查圓周角及線面垂直判定定理、面面垂直判定定理的應(yīng)用,考查垂直關(guān)系的簡(jiǎn)單證明.18、(1)見解析(2)【解析】
(1)利用直線與平面垂直的判定,結(jié)合三角形全等判定,得到,再次結(jié)合三角形全等,即可.(2)法一:建立坐標(biāo)系,分別計(jì)算的法向量,結(jié)合兩向量夾角為直角,計(jì)算出的值,然后結(jié)合,即可.法二:設(shè)出OA=x,用x分別表示AB,BD,AD,結(jié)合,建立方程,計(jì)算x,結(jié)合,即可.【詳解】(1)連結(jié),交于點(diǎn),連結(jié),因?yàn)閭?cè)面是菱形,所以,又因?yàn)?,,所以平面,而平面,所以,因?yàn)?,所以,而,所以?(2)因?yàn)?,,所以,(法一)以為坐?biāo)原點(diǎn),所以直線為軸,所以直線為軸,所以直線為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,所以,,,設(shè)平面的法向量,所以令,則,,取,設(shè)平面的法向量,所以令,則,,取,依題意得,解得.所以.(法二)過作,連結(jié),由(1)知,所以且,所以是二面角的平面角,依題意得,,所以,設(shè),則,,又由,,所以由,解得,所以.【點(diǎn)睛】本道題考查了直線與平面垂直判定,考查了利用空間向量解決二面角問題,難度較難.19、(1)(2)【解析】
(1)對(duì)等式,運(yùn)用正弦定理實(shí)現(xiàn)邊角轉(zhuǎn)化,再利用同角三角函數(shù)關(guān)系中的商關(guān)系,可求出角的正切值,最后根據(jù)角的取值范圍,求出角;(2)由三角形面積公式,可以求出的值,最后利用余弦定理,求出的值.【詳解】(1)∵,∴,∵,∴,∴,∴在中;(2)∵的面積為,∴,∴,由余弦定理,有,∴.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運(yùn)算能力.20、(1)證明見解析;(2);(3).【解析】
(1)由,證得平面,再由線面平行的性質(zhì),即可得到;(2)取中點(diǎn),連結(jié),推得,,得到平面,再由多面體的體積,結(jié)合體積公式,即可求解;(3)由,設(shè)的中點(diǎn)為,連結(jié),推得,從而得到就是二面角的平面角,由此可求得二面角的余弦值.【詳解】證明:(1)因?yàn)槠矫嫫矫妫云矫?,又平面,平面平面,所以;?)取中點(diǎn),連結(jié),由得,同理,又因?yàn)?,所以平面,在中,,所以,所以多面體的體積;(3)由題意知,底面為邊長(zhǎng)2的菱形,,所以,又,所以,設(shè)的中點(diǎn)為,連結(jié),由側(cè)面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值為.【點(diǎn)睛】本題主要考查了線面位置關(guān)系的判定,多
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)魚技巧與知識(shí)培訓(xùn)課件
- 2025年度海洋動(dòng)物運(yùn)輸與供應(yīng)鏈管理合同3篇
- 綠森鋼化中空玻璃遷擴(kuò)建項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)拿地
- 全國(guó)清華版信息技術(shù)小學(xué)四年級(jí)下冊(cè)新授課 第4課 獨(dú)特景觀-在幻燈片中插入文本框 說課稿
- Unit7 Grammar Focus 說課稿 2024-2025學(xué)年人教版英語七年級(jí)上冊(cè)
- 貴州省安順市(2024年-2025年小學(xué)六年級(jí)語文)統(tǒng)編版競(jìng)賽題(下學(xué)期)試卷及答案
- 安徽省合肥市新站區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末化學(xué)試卷(含答案)
- 二零二五年度周轉(zhuǎn)材料租賃與施工現(xiàn)場(chǎng)安全生產(chǎn)合同3篇
- 陜西省商洛市(2024年-2025年小學(xué)六年級(jí)語文)部編版小升初真題(上學(xué)期)試卷及答案
- 貴州黔南經(jīng)濟(jì)學(xué)院《手繪表現(xiàn)技法景觀》2023-2024學(xué)年第一學(xué)期期末試卷
- 事業(yè)單位公開招聘工作人員政審表
- GB/T 35199-2017土方機(jī)械輪胎式裝載機(jī)技術(shù)條件
- GB/T 28591-2012風(fēng)力等級(jí)
- 思博安根測(cè)儀熱凝牙膠尖-說明書
- 信息學(xué)奧賽-計(jì)算機(jī)基礎(chǔ)知識(shí)(完整版)資料
- 數(shù)字信號(hào)處理(課件)
- 出院小結(jié)模板
- HITACHI (日立)存儲(chǔ)操作說明書
- (新版教材)蘇教版二年級(jí)下冊(cè)科學(xué)全冊(cè)教案(教學(xué)設(shè)計(jì))
- 61850基礎(chǔ)技術(shù)介紹0001
- 電鏡基本知識(shí)培訓(xùn)
評(píng)論
0/150
提交評(píng)論