版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省鶴壁市浚縣第二高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列的通項公式是,則該數(shù)列的第五項是()A. B. C. D.2.已知向量,且,則與的夾角為()A. B. C. D.3.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形4.某市家庭煤氣的使用量和煤氣費(元)滿足關(guān)系,已知某家庭今年前三個月的煤氣費如下表:月份用氣量煤氣費一月份元二月份元三月份元若四月份該家庭使用了的煤氣,則其煤氣費為()元A. B. C. D.5.已知,則角的終邊所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.?dāng)?shù)列{an}中a1=﹣2,an+1=1,則a2019的值為()A.﹣2 B. C. D.7.已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖1和圖2所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取4%的學(xué)生進行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別為()A.400,40 B.200,10 C.400,80 D.200,208.向量,,,滿足條件.,則A. B. C. D.9.關(guān)于的不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.10.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為________.12.設(shè)為等差數(shù)列的前n項和,,則________.13.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人要走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后達到目的地.”則該人最后一天走的路程為__________里.14.已知是等差數(shù)列,公差不為零,若,,成等比數(shù)列,且,則________15.已知等差數(shù)列的公差為,且,其前項和為,若滿足,,成等比數(shù)列,且,則______,______.16.?dāng)?shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認為正確的結(jié)論序號都填上)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到下表數(shù)據(jù):單價(元)銷量(件)且,,(1)已知與具有線性相關(guān)關(guān)系,求出關(guān)于回歸直線方程;(2)解釋回歸直線方程中的含義并預(yù)測當(dāng)單價為元時其銷量為多少?18.某中學(xué)高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個班中5名學(xué)生成績的方差、,并根據(jù)結(jié)果,你認為應(yīng)該選派哪一個班的學(xué)生參加決賽?(2)從成績在85分及以上的學(xué)生中隨機抽取2名.求至少有1名來自甲班的概率.19.設(shè)等比數(shù)列的前n項和為.已知,,求和.20.已知向量,,且(1)求·及;(2)若,求的最小值21.在平面直角坐標(biāo)系中,已知向量,,.(1)若,求的值;(2)若與的夾角為,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
代入即可得結(jié)果.【詳解】解:由已知,故選:A.【點睛】本題考查數(shù)列的項和項數(shù)之間的關(guān)系,是基礎(chǔ)題.2、D【解析】
直接由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】設(shè)與的夾角為,由,,,所以.故選:D【點睛】本題主要考查平面向量的數(shù)量積公式.3、D【解析】
用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.4、C【解析】由題意得:C=4,將(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20時:f(20)=4+(20﹣5)=11.5.故選:C.點睛:這是函數(shù)的實際應(yīng)用題型,根據(jù)題目中的條件和已知點得到分段函數(shù)的未知量的值,首先得到函數(shù)表達式,再根據(jù)題意讓求自變量為20時的函數(shù)值,求出即可。實際應(yīng)用題型,一般是先根據(jù)題意構(gòu)建模型,列出表達式,根據(jù)條件求解問題即可。5、D【解析】由可知:則的終邊所在的象限為第四象限故選6、B【解析】
根據(jù)遞推公式,算出即可觀察出數(shù)列的周期為3,根據(jù)周期即可得結(jié)果.【詳解】解:由已知得,,,
,…,,
所以數(shù)列是以3為周期的周期數(shù)列,故,
故選:B.【點睛】本題考查遞推數(shù)列的直接應(yīng)用,難度較易.7、A【解析】
由扇形圖能得到總數(shù),利用抽樣比較能求出樣本容量;由分層抽樣和條形圖能求出抽取的高中生近視人數(shù).【詳解】用分層抽樣的方法抽取的學(xué)生進行調(diào)查,樣本容量為:,抽取的高中生近視人數(shù)為:,故選A.【點睛】該題考查的是有關(guān)概率統(tǒng)計的問題,涉及到的知識點有扇形圖與條形圖的應(yīng)用,以及分層抽樣的性質(zhì),注意對基礎(chǔ)知識的靈活應(yīng)用,屬于簡單題目.8、C【解析】向量,則,故解得.故答案為:C。9、D【解析】
特值,利用排除法求解即可.【詳解】因為當(dāng)時,滿足題意,所以可排除選項B、C、A,故選D【點睛】不等式恒成立問題有兩個思路:求最值,說明恒成立參變分離,再求最值。10、B【解析】
過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應(yīng)用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意利用誘導(dǎo)公式求得的值,可得要求式子的值.【詳解】,則,故答案為:.【點睛】本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.12、54.【解析】
設(shè)首項為,公差為,利用等差數(shù)列的前n項和公式列出方程組,解方程求解即可.【詳解】設(shè)首項為,公差為,由題意,可得解得所以.【點睛】本題主要考查了等差數(shù)列的前n項和公式,解方程的思想,屬于中檔題.13、3【解析】分析:每天走的路形成等比數(shù)列{an},q=,S3=1.利用求和公式即可得出.詳解:每天走的路形成等比數(shù)列{an},q=,S3=1.∴S3=1=,解得a1=2.∴該人最后一天走的路程=a1q5==3.故答案為:3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)題設(shè)條件,得到方程組,求得,即可得到答案.【詳解】由題意,數(shù)列是等差數(shù)列,滿足,,成等比數(shù)列,且,可得,即且,解得,所以.故答案為:.【點睛】本題主要考查了等差數(shù)列的通項公式,以及等比中項的應(yīng)用,其中解答中熟練利用等差數(shù)列的通項公式和等比中項公式,列出方程組求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、2【解析】
由,可求出,再由,,成等比數(shù)列,可建立關(guān)系式,求出,進而求出即可.【詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因為,所以,,所以.故答案為:2;.【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列前項和的求法,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.16、①③④【解析】
根據(jù)題中所給的條件,將數(shù)列的項逐個寫出,可以求得,將數(shù)列的各項求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結(jié)果,結(jié)合條件,去挖掘條件,最后得到正確的結(jié)果.【詳解】對于①,前24項構(gòu)成的數(shù)列是,所以,故①正確;對于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對于③,由上邊結(jié)論可知是以為首項,以為公比的等比數(shù)列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【點睛】該題考查的是有關(guān)數(shù)列的性質(zhì)以及對應(yīng)量的運算,解題的思想是觀察數(shù)列的通項公式,理解項與和的關(guān)系,認真分析,仔細求解,從而求得結(jié)果.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)銷量為件.【解析】
(1)利用最小二乘法的公式求得與的值,即可求出線性回歸方程;(2)的含義是單價每增加1元,該產(chǎn)品的銷量將減少7件;在(1)中求得的回歸方程中,取求得值,即可得到單價為12元時的銷量.【詳解】(1)由題意得:,,,,關(guān)于回歸直線方程為;(2)的含義是單價每增加元,該產(chǎn)品的銷量將減少件;當(dāng)時,,即當(dāng)單價為元時預(yù)測其銷量為件.【點睛】本題主要考查線性回歸方程的求法—最小二乘法,以及利用線性回歸方程進行預(yù)測估計。18、(3)甲班參加;(4).【解析】
試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學(xué)生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應(yīng)該選派甲班的學(xué)生參加決賽.(4)成績在85分及以上的學(xué)生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.(4)分及以上甲班有人,設(shè)為;乙班有人,設(shè)為,從這人中抽取人的選法有:,共種,其中甲班至少有名學(xué)生的選法有種,則甲班至少有名學(xué)生被抽到的概率為.考點:3.古典概型及其概率計算公式;4.莖葉圖.19、或.【解析】
試題解析:(1)解得或即或(2)當(dāng)時,當(dāng)時,考點:本題考查求通項及求和點評:解決本題的關(guān)鍵是利用基本量法解題20、(1)見解析;(2).【解析】
(1)運用向量數(shù)量積的坐標(biāo)表示,求出·;運用平面向量的坐標(biāo)運算公式求出,然后求出模.(2)根據(jù)上(1)求出函數(shù)的解析式,配方,利用二次函數(shù)的性質(zhì)求出最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025公司之間無息借款合同模板
- 2025品牌策劃合同
- 2025商鋪買賣定金合同的范本
- 2025工廠物業(yè)管理的合同
- 科技創(chuàng)業(yè)挑戰(zhàn)與機遇并存
- 職場新人的季節(jié)性胃腸保健指南
- 科學(xué)與工程教育的融合與創(chuàng)新人才培養(yǎng)
- 種植技術(shù)的新時代農(nóng)業(yè)科技園區(qū)的建設(shè)路徑
- 跨文化背景下的學(xué)生德育評價策略
- 二零二五年度床上三件套抗菌技術(shù)研發(fā)合同2篇
- 船員外包服務(wù)投標(biāo)方案
- 沉積相及微相劃分教學(xué)課件
- 鉗工考試題及參考答案
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)五 引發(fā)用戶共鳴外部條件的把控
- 工程造價專業(yè)職業(yè)能力分析
- 醫(yī)藥高等數(shù)學(xué)知到章節(jié)答案智慧樹2023年浙江中醫(yī)藥大學(xué)
- 沖渣池施工方案
- 人教版初中英語八年級下冊 單詞默寫表 漢譯英
- 學(xué)校網(wǎng)絡(luò)信息安全管理辦法
- 中國古代文學(xué)史 馬工程課件(下)21第九編晚清文學(xué) 緒論
- 2023年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招(語文)試題庫含答案解析
評論
0/150
提交評論