云南省勐??h第三中學2025屆高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
云南省勐??h第三中學2025屆高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
云南省勐海縣第三中學2025屆高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
云南省勐??h第三中學2025屆高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
云南省勐??h第三中學2025屆高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省勐??h第三中學2025屆高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,則()A. B. C. D.2.已知A(-3,8),B(2,2),在x軸上有一點M,使得|MA|+|MB|最短,則點M的坐標是()A.(-1,0) B.(1,0) C. D.3.已知,的線性回歸直線方程為,且,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的為A.變量,之間呈現(xiàn)正相關(guān)關(guān)系 B.可以預測,當時,C. D.由表格數(shù)據(jù)可知,該回歸直線必過點4.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度5.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc26.把函數(shù)的圖象沿軸向右平移個單位,再把所得圖象上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼?,可得函?shù)的圖象,則的解析式為()A. B.C. D.7.在等差數(shù)列中,若前項的和,,則()A. B. C. D.8.對于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項和為,若對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.9.已知中,,,點是的中點,是邊上一點,則的最小值是()A. B. C. D.10.已知點是所在平面內(nèi)的一定點,是平面內(nèi)一動點,若,則點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.內(nèi)心 D.外心二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),為單位向量,其中,,且在方向上的射影數(shù)量為2,則與的夾角是___.12.函數(shù)的反函數(shù)為____________.13.設(shè)是等差數(shù)列的前項和,若,則___________.14.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是__________.15.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.16.底面邊長為,高為的直三棱柱形容器內(nèi)放置一氣球,使氣球充氣且盡可能的膨脹(保持球的形狀),則氣球表面積的最大值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.18.在中,角所對的邊為,且滿足(1)求角的值;(2)若且,求的取值范圍.19.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù),的單調(diào)遞減區(qū)間.20.的內(nèi)角所對邊分別為,已知.(1)求;(2)若,,求的面積.21.若在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“和一點”.(1)函數(shù)是否有“和一點”?請說明理由;(2)若函數(shù)有“和一點”,求實數(shù)的取值范圍;(3)求證:有“和一點”.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

本題首先可根據(jù)計算出的值,然后根據(jù)正弦定理以及即可計算出的值,最后得出結(jié)果?!驹斀狻恳驗?,所以.由正弦定理可知,即,解得,故選A。【點睛】本題考查根據(jù)解三角形的相關(guān)公式計算的值,考查同角三角函數(shù)的相關(guān)公式,考查正弦定理的使用,是簡單題。2、B【解析】

由集合性質(zhì)可知,求出點A關(guān)于x軸的對稱點,此對稱點與點B確定的直線與x軸的交點,即為點M.【詳解】點A關(guān)于x軸的對稱點C的坐標為:,由兩點可得直線BC方程為:,可求得與y軸的交點為.故選B.【點睛】本題考查最短路徑問題,輔助作圖更易理解,注意求直線方程時要熟練使用最簡便的方式,注意計算的準確性.3、C【解析】

A中,根據(jù)線性回歸直線方程中回歸系數(shù)0.82>0,判斷x,y之間呈正相關(guān)關(guān)系;B中,利用回歸方程計算x=5時的值即可預測結(jié)果;C中,計算、,代入回歸直線方程求得m的值;D中,由題意知m=1.8時求出、,可得回歸直線方程過點(,).【詳解】已知線性回歸直線方程為0.82x+1.27,0.82>0,所以變量x,y之間呈正相關(guān)關(guān)系,A正確;計算x=5時,0.82×5+1.27=5.37,即預測當x=5時y=5.37,B正確;(0+1+2+3)=1.5,(0.8+m+3.1+4.3),代入回歸直線方程得0.82×1.5+1.27,解得m=1.8,∴C錯誤;由題意知m=1.8時,1.5,2.5,所以回歸直線方程過點(1.5,2.5),D正確.故選C.【點睛】本題考查了線性回歸方程的概念與應(yīng)用問題,是基礎(chǔ)題.4、A【解析】

先將轉(zhuǎn)化為,再判斷的符號即可得出結(jié)論.【詳解】解:因為,所以只需把向右平移個單位.故選:A【點睛】函數(shù)左右平移變換時,一是要注意平移方向:按“左加右減",如由的圖象變?yōu)榈膱D象,是由變?yōu)?所以是向左平移個單位;二是要注意前面的系數(shù)是不是,如果不是,左右平移時,要先提系數(shù),再來計算.5、C【解析】

利用特殊值對錯誤選項進行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.6、C【解析】

根據(jù)三角函數(shù)圖像變換的原則,即可得出結(jié)果.【詳解】先把函數(shù)的圖象沿軸向右平移個單位,得到;再把圖像上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼模玫?故選C【點睛】本題主要考查三角函數(shù)的圖像變換問題,熟記圖像變換的原則即可,屬于??碱}型.7、C【解析】試題分析:.考點:等差數(shù)列的基本概念.8、B【解析】分析:由題意首先求得的通項公式,然后結(jié)合等差數(shù)列的性質(zhì)得到關(guān)于k的不等式組,求解不等式組即可求得最終結(jié)果.詳解:由題意,,則,很明顯n?2時,,兩式作差可得:,則an=2(n+1),對a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實數(shù)的取值范圍為.本題選擇B選項.點睛:“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應(yīng)萬變才是制勝法寶.9、B【解析】

通過建系以及數(shù)量積的坐標運算,從而轉(zhuǎn)化為函數(shù)的最值問題.【詳解】根據(jù)題意,建立圖示直角坐標系,,,則,,,.設(shè),則,是邊上一點,當時,取得最小值,故選.【點睛】本題主要考察解析法在向量中的應(yīng)用,將平面向量的數(shù)量積轉(zhuǎn)化成了函數(shù)的最值問題.10、A【解析】

設(shè)D是BC的中點,由,,知,所以點P的軌跡是射線AD,故點P的軌跡一定經(jīng)過△ABC的重心.【詳解】如圖,設(shè)D是BC的中點,∵,,∴,即∴點P的軌跡是射線AD,∵AD是△ABC中BC邊上的中線,∴點P的軌跡一定經(jīng)過△ABC的重心.故選:A.【點睛】本題考查三角形五心的應(yīng)用,是基礎(chǔ)題.解題時要認真審題,仔細解答.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用在方向上的射影數(shù)量為2可得:,即可整理得:,問題得解.【詳解】因為在方向上的射影數(shù)量為2,所以,整理得:又,為單位向量,所以.設(shè)與的夾角,則所以與的夾角是【點睛】本題主要考查了向量射影的概念及方程思想,還考查了平面向量夾角公式應(yīng)用,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.12、【解析】

首先求出在區(qū)間的值域,再由表示的含義,得到所求函數(shù)的反函數(shù).【詳解】因為,所以,.所以的反函數(shù)是.故答案為:【點睛】本題主要考查反函數(shù)定義,同時考查了三角函數(shù)的值域問題,屬于簡單題.13、1.【解析】

由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎(chǔ)題.14、6【解析】

由題得x=7,再利用中位數(shù)的公式求這組數(shù)據(jù)的中位數(shù).【詳解】因為數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,所以,則這組數(shù)據(jù)的中位數(shù)是.故答案為6【點睛】本題主要考查眾數(shù)的概念和中位數(shù)的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.15、4【解析】

由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.16、【解析】由題意,氣球充氣且盡可能地膨脹時,氣球的半徑為底面三角形內(nèi)切圓的半徑

∵底面三角形的邊長分別為,∴底面三角形的邊長為直角三角形,利用等面積可求得∴氣球表面積為4π.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

⑴用頻率分布直方圖中的每一組數(shù)據(jù)的平均數(shù)乘以對應(yīng)的概率并求和即可得出結(jié)果;⑵首先可通過分層抽樣確定6人中在分數(shù)段以及分數(shù)段中的人數(shù),然后分別寫出所有的基本事件以及滿足題意中“兩名同學數(shù)學成績均在中”的基本事件,最后兩者相除,即可得出結(jié)果.【詳解】⑴由頻率分布表,估計這50名同學的數(shù)學平均成績?yōu)椋?;⑵由頻率分布直方圖可知分數(shù)低于115分的同學有人,則用分層抽樣抽取6人中,分數(shù)在有1人,用a表示,分數(shù)在中的有5人,用、、、、表示,則基本事件有、、、、、、、、、、、、、、,共15個,滿足條件的基本事件為、、、、、、、、、,共10個,所以這兩名同學分數(shù)均在中的概率為.【點睛】本題考查了頻率分布直方圖以及古典概型的相關(guān)性質(zhì),解決本題的關(guān)鍵是對頻率分布直方圖的理解以及對古典概型概率的計算公式的使用,考查推理能力,是簡單題.18、(1)或;(2).【解析】試題分析:(1)利用升冪公式及兩角和與差的余弦公式化簡已知等式,可得,從而得,注意兩解;(2)由,得,利用正弦定理得,從而可變?yōu)椋萌切蔚膬?nèi)角和把此式化為一個角的函數(shù),再由兩角和與差的正弦公式化為一個三角函數(shù)形式,由的范圍()結(jié)合正弦函數(shù)性質(zhì)可得取值范圍.試題解析:(1)由已知,得,化簡得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.19、(1);(2).【解析】

(1)利用余弦函數(shù)的單調(diào)性列出不等式直接求的單調(diào)遞增區(qū)間.(2)利用正弦函數(shù)的單調(diào)遞減區(qū)間,直接求解,的單調(diào)遞減區(qū)間.【詳解】解:(1)由,,可得,,函數(shù)的單調(diào)遞增區(qū)間:,.(2)因為,;可得,.時,.函數(shù),的單調(diào)遞減區(qū)間:.【點睛】本題考查三角函數(shù)的單調(diào)性的求法,考查學生的計算能力,屬于基礎(chǔ)題.20、(1);(2)5.【解析】

(1)根據(jù)正弦定理得,化簡即得C的值;(2)先利用余弦定理求出a的值,再求的面積.【詳解】(1)因為,根據(jù)正弦定理得,又,從而,由于,所以.(2)根據(jù)余弦定理,而,,,代入整理得,解得或(舍去).故的面積為.【點睛】本題主要考查正弦余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.21、(1)不存在;(2)a>﹣2;(3)見解析【解析】

(1)解方程即可判斷;(2)由題轉(zhuǎn)化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數(shù)a=2x﹣2求值域即可求解;(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.【詳解】(1)若函數(shù)有“和一點”,則不合題意故不存在(2)若函數(shù)f(x)=2x+a+2x有“和一點”.則方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)證明:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論