北京一零一中新高考數(shù)學(xué)押題試卷及答案解析_第1頁
北京一零一中新高考數(shù)學(xué)押題試卷及答案解析_第2頁
北京一零一中新高考數(shù)學(xué)押題試卷及答案解析_第3頁
北京一零一中新高考數(shù)學(xué)押題試卷及答案解析_第4頁
北京一零一中新高考數(shù)學(xué)押題試卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京一零一中新高考數(shù)學(xué)押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的值構(gòu)成的集合是()A. B. C. D.2.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.3.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定4.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,185.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.6.若,則,,,的大小關(guān)系為()A. B.C. D.7.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.8.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.9.國務(wù)院發(fā)布《關(guān)于進一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年10.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.311.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.12.集合,,則=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若滿足,則目標函數(shù)的最大值為______.14.已知兩動點在橢圓上,動點在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.15.已知,則_____.16.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)己知函數(shù).(1)當時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.18.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.20.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實數(shù),且,證明:.21.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.22.(10分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護人員和醫(yī)療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫(yī)用防護服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務(wù),該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

對分奇數(shù)、偶數(shù)進行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構(gòu)成的集合為.【點睛】本題考查三角式的化簡,誘導(dǎo)公式,分類討論,屬于基本題.2、D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.3、C【解析】

由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.4、A【解析】

利用統(tǒng)計圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.5、B【解析】

設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.6、D【解析】因為,所以,因為,,所以,.綜上;故選D.7、C【解析】

由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.8、D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.9、C【解析】

觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎(chǔ).10、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。11、D【解析】

用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.12、C【解析】

先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較?。?、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標函數(shù)為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.14、【解析】

根據(jù)題意可知圓上任意一點向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點向橢圓所引的兩條切線互相垂直,因此當直線與圓相離時,恒為銳角,故,解得從而離心率.故答案為:【點睛】本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.15、【解析】

對原方程兩邊求導(dǎo),然后令求得表達式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.16、【解析】

由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計算能力,難度較難.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】

(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當時,,;當時,函數(shù)單調(diào)遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數(shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當時,,故函數(shù)在上單調(diào)遞增,故當時,;當時,函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當時,函數(shù)有極小值.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思想,屬于難題.18、(1);(2)【解析】

試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.19、(1);(2).【解析】

(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關(guān)系,得到原心到直線的距離等于半徑,得到,從而求得,進而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當直線l的斜率不存在時,,,由于;②當直線l的斜率為0時,,,則;③當直線l的斜率不為0時,設(shè)直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標準方程,考查直線與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過程中,注意對直線方程的分類討論,屬于中檔題目.20、(1)(2)證明見解析【解析】

(1)分類討論,去絕對值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當時,單調(diào)遞減;當時,單調(diào)遞增.所以當時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,,為正實數(shù),所以.當且僅當,即,,時取等號,所以.【點睛】本題考查絕對值不等式和基本不等式的應(yīng)用,還運用“乘1法”和分類討論思想,屬于中檔題.21、(1)詳見解析;(2).【解析】

(1)根據(jù)平面,四邊形是矩形,由為中點,且,利用平面幾何知識,可得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論