版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)春市普通高中高三新高考數(shù)學(xué)試題第一次模擬考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.2.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.3.已知隨機(jī)變量服從正態(tài)分布,,()A. B. C. D.4.函數(shù)()的圖象的大致形狀是()A. B. C. D.5.已知,,則的大小關(guān)系為()A. B. C. D.6.過(guò)圓外一點(diǎn)引圓的兩條切線,則經(jīng)過(guò)兩切點(diǎn)的直線方程是().A. B. C. D.7.設(shè)函數(shù)的定義域?yàn)?,滿足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是().A. B. C. D.8.由曲線圍成的封閉圖形的面積為()A. B. C. D.9.已知函數(shù),則()A.2 B.3 C.4 D.510.已知集合,則集合()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.12.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時(shí)橢圓的方程是____.14.已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí),的內(nèi)心的軌跡方程為__________.15.已知向量,滿足,,,則向量在的夾角為______.16.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標(biāo)方程;(2)在什么范圍內(nèi)取值時(shí),與有交點(diǎn).18.(12分)已知數(shù)列滿足:,,且對(duì)任意的都有,(Ⅰ)證明:對(duì)任意,都有;(Ⅱ)證明:對(duì)任意,都有;(Ⅲ)證明:.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí)不等式成立,求的取值范圍.21.(12分)一張邊長(zhǎng)為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無(wú)蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無(wú)蓋三棱錐容器的容積最大.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計(jì)算知錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對(duì)于不等式性質(zhì)的靈活運(yùn)用.2、A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無(wú)零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.3、B【解析】
利用正態(tài)分布密度曲線的對(duì)稱性可得出,進(jìn)而可得出結(jié)果.【詳解】,所以,.故選:B.【點(diǎn)睛】本題考查利用正態(tài)分布密度曲線的對(duì)稱性求概率,屬于基礎(chǔ)題.4、C【解析】
對(duì)x分類討論,去掉絕對(duì)值,即可作出圖象.【詳解】故選C.【點(diǎn)睛】識(shí)圖常用的方法(1)定性分析法:通過(guò)對(duì)問(wèn)題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問(wèn)題;(2)定量計(jì)算法:通過(guò)定量的計(jì)算來(lái)分析解決問(wèn)題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來(lái)分析解決問(wèn)題.5、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最小;而由對(duì)數(shù)換底公式化簡(jiǎn)可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對(duì)數(shù)式的化簡(jiǎn)變形,對(duì)數(shù)換底公式及基本不等式的簡(jiǎn)單應(yīng)用,作差法比較大小,屬于中檔題.6、A【解析】過(guò)圓外一點(diǎn),引圓的兩條切線,則經(jīng)過(guò)兩切點(diǎn)的直線方程為,故選.7、B【解析】
求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),,,,又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.8、A【解析】
先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.9、A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.10、D【解析】
弄清集合B的含義,它的元素x來(lái)自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.11、B【解析】
模擬程序框圖運(yùn)行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點(diǎn)睛】本題主要考查程序框圖,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過(guò)C點(diǎn)時(shí),函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對(duì)稱軸與求解的關(guān)系分析最值求解即可.【詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶?duì)稱軸為.(i)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.此時(shí),解得.(ii)當(dāng)時(shí),在上單調(diào)遞減.此時(shí),解得舍去.綜上,橢圓方程為.故答案為:【點(diǎn)睛】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問(wèn)題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對(duì)稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.14、【解析】
考查更為一般的問(wèn)題:設(shè)P為橢圓C:上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長(zhǎng)軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點(diǎn)I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.15、【解析】
把平方利用數(shù)量積的運(yùn)算化簡(jiǎn)即得解.【詳解】因?yàn)?,,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、【解析】
由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標(biāo)方程.(2)將的參數(shù)方程代入的直角坐標(biāo)方程,與有交點(diǎn),可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標(biāo)方程得:與有交點(diǎn),即【點(diǎn)睛】本題考查了極坐標(biāo)方程與普通方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化、直線與圓的位置關(guān)系的判斷,屬于基礎(chǔ)題.18、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應(yīng)用題中所給的條件,有效利用,再者就是注意應(yīng)用反證法證題的步驟;(2)將式子進(jìn)行相應(yīng)的代換,結(jié)合不等式的性質(zhì)證得結(jié)果;(3)結(jié)合題中的條件,應(yīng)用反證法求得結(jié)果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對(duì)任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對(duì)任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時(shí),有,與矛盾.則.得證.點(diǎn)睛:該題考查的是有關(guān)命題的證明問(wèn)題,在證題的過(guò)程中,注意對(duì)題中的條件的等價(jià)轉(zhuǎn)化,注意對(duì)式子的等價(jià)變形,以及證題的思路,要掌握證明問(wèn)題的方法,尤其是反證法的證題思路以及證明步驟.19、(1);(2)【解析】
(1),對(duì)函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對(duì)求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時(shí),在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時(shí),令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時(shí),在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問(wèn)題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點(diǎn)分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個(gè)絕對(duì)值符號(hào)可以去掉,不等式可以化為時(shí),分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時(shí),,即故不等式的解集為.(2)當(dāng)時(shí)成立等價(jià)于當(dāng)時(shí)成立.若,則當(dāng)時(shí);若,的解集為,所以,故.綜上,的取值范圍為.點(diǎn)睛:該題考查的是有關(guān)絕對(duì)值不等式的解法,以及含參的絕對(duì)值的式子在某個(gè)區(qū)間上恒成立求參數(shù)的取值范圍的問(wèn)題,在解題的過(guò)程中,需要會(huì)用零點(diǎn)分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個(gè)不等式組來(lái)解決,關(guān)于第二問(wèn)求參數(shù)的取值范圍時(shí),可以應(yīng)用題中所給的自變量的范圍,去掉一個(gè)絕對(duì)值符號(hào),之后進(jìn)行分類討論,求得結(jié)果.21、(1),;(2)當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【解析】
(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無(wú)蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.22、(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個(gè)點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 動(dòng)火安全課件
- 醫(yī)院反腐倡廉廉潔行醫(yī)專題黨課宣講課件
- 《超市盤點(diǎn)操作流程》課件
- 贛南科技學(xué)院《現(xiàn)代企業(yè)管理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 應(yīng)急照明系統(tǒng)培訓(xùn)課件
- 大學(xué)生安全教育(共31張課件)-2024鮮版
- 七年級(jí)語(yǔ)文上冊(cè)第二單元體驗(yàn)親情8世說(shuō)新語(yǔ)二則高效教案新人教版
- 2022年-2023年公務(wù)員(國(guó)考)之公共基礎(chǔ)知識(shí)模考模擬試題
- 氣胸護(hù)理查房
- 慶元旦表演安全課件
- 2025年林權(quán)抵押合同范本
- 2024年北師大版四年級(jí)數(shù)學(xué)上學(xué)期學(xué)業(yè)水平測(cè)試 期末卷(含答案)
- 智能檢測(cè)與監(jiān)測(cè)技術(shù)-智能建造技術(shù)專02課件講解
- 2025蛇年一年級(jí)寒假作業(yè)創(chuàng)意與寓意齊【高清可打印】
- 2024年高考物理一輪復(fù)習(xí)講義(新人教版):第七章動(dòng)量守恒定律
- 多系統(tǒng)萎縮鑒別及治療
- 設(shè)備的使用和維護(hù)管理制度模版(3篇)
- 浙江省寧波市慈溪市2023-2024學(xué)年高三上學(xué)期語(yǔ)文期末測(cè)試試卷
- 草學(xué)類專業(yè)生涯發(fā)展展示
- 法理學(xué)課件馬工程
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》真題及解析
評(píng)論
0/150
提交評(píng)論