版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省茂名市名校2024屆中考四模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.把8a3﹣8a2+2a進(jìn)行因式分解,結(jié)果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)22.下列圖形不是正方體展開圖的是()A. B.C. D.3.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π4.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點(diǎn)A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°5.如圖,△ABC中AB兩個頂點(diǎn)在x軸的上方,點(diǎn)C的坐標(biāo)是(﹣1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是()A. B. C. D.6.如果關(guān)于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥47.已知二次函數(shù),當(dāng)自變量取時,其相應(yīng)的函數(shù)值小于0,則下列結(jié)論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關(guān)系不確定8.對于點(diǎn)A(x1,y1),B(x2,y2),定義一種運(yùn)算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點(diǎn)C,D,E,F(xiàn),滿足,則C,D,E,F(xiàn)四點(diǎn)【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數(shù)圖象上D.是同一個正方形的四個頂點(diǎn)9.如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.510.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解______.12.的算術(shù)平方根為______.13.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.14.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.15.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點(diǎn),D點(diǎn)是射線AC上的一個動點(diǎn),將△ADE沿線段DE翻折,得到△A′DE,當(dāng)A′D⊥AB時,則線段AD的長為_____.16.計算:﹣22÷(﹣)=_____.三、解答題(共8題,共72分)17.(8分)在△ABC中,∠ACB=45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(1)如果AB=AC.如圖①,且點(diǎn)D在線段BC上運(yùn)動.試判斷線段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.(2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動.(1)中結(jié)論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)18.(8分)某商場以每件30元的價格購進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數(shù)關(guān)系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數(shù)關(guān)系式.商場每天銷售這種商品的銷售利潤能否達(dá)到500元?如果能,求出此時的銷售價格;如果不能,說明理由.19.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點(diǎn)A,與雙曲線的一個交點(diǎn)為B(-1,4).求直線與雙曲線的表達(dá)式;過點(diǎn)B作BC⊥x軸于點(diǎn)C,若點(diǎn)P在雙曲線上,且△PAC的面積為4,求點(diǎn)P的坐標(biāo).20.(8分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現(xiàn)有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.21.(8分)如圖,在中,AB=AC,,點(diǎn)D是BC的中點(diǎn),DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點(diǎn)M,射線DM繞點(diǎn)D順時針旋轉(zhuǎn),與AC邊交于點(diǎn)N.①根據(jù)條件補(bǔ)全圖形;②寫出DM與DN的數(shù)量關(guān)系并證明;③用等式表示線段BM、CN與BC之間的數(shù)量關(guān)系,(用含的銳角三角函數(shù)表示)并寫出解題思路.22.(10分)在正方形ABCD中,動點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動,同時點(diǎn)F在邊CB上自C向B移動時,連接AE和DF交于點(diǎn)P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動,使得點(diǎn)P也隨之運(yùn)動,請你畫出點(diǎn)P運(yùn)動路徑的草圖.若AD=2,試求出線段CP的最大值.23.(12分)某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目”四個項目進(jìn)行評價.檢測小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是
;在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為
度;將條形統(tǒng)計圖補(bǔ)充完整;如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨(dú)立思考”的學(xué)生約有多少人?24.藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,回答下列問題:(1)請你將條形統(tǒng)計圖補(bǔ)充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學(xué)生恰好是一男一女的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
首先提取公因式2a,進(jìn)而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點(diǎn)睛】本題因式分解中提公因式法與公式法的綜合運(yùn)用.2、B【解析】
由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經(jīng)過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點(diǎn)睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.3、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點(diǎn)睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.4、A【解析】
如圖,過點(diǎn)C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點(diǎn)C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.5、D【解析】
設(shè)點(diǎn)B的橫坐標(biāo)為x,然后表示出BC、B′C的橫坐標(biāo)的距離,再根據(jù)位似變換的概念列式計算.【詳解】設(shè)點(diǎn)B的橫坐標(biāo)為x,則B、C間的橫坐標(biāo)的長度為﹣1﹣x,B′、C間的橫坐標(biāo)的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點(diǎn)睛】本題考查了位似變換,坐標(biāo)與圖形的性質(zhì),根據(jù)位似變換的定義,利用兩點(diǎn)間的橫坐標(biāo)的距離等于對應(yīng)邊的比列出方程是解題的關(guān)鍵.6、D【解析】
由被開方數(shù)非負(fù)結(jié)合根的判別式△≥0,即可得出關(guān)于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△≥0時,方程有實數(shù)根”是解題的關(guān)鍵.7、B【解析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設(shè)拋物線與x軸交于點(diǎn)A、B,∴AB<1,∵x取m時,其相應(yīng)的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點(diǎn)A的左側(cè),x=m-1時,y>0,故選B.【點(diǎn)睛】本題考查二次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是學(xué)會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結(jié)合的思想.8、A?!窘馕觥俊邔τ邳c(diǎn)A(x1,y1),B(x2,y2),,∴如果設(shè)C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),那么,。又∵,∴?!?。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線上,∴互不重合的四點(diǎn)C,D,E,F(xiàn)在同一條直線上。故選A。9、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.10、D【解析】
根據(jù)=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(3a+1)【解析】3a2+a=a(3a+1),故答案為a(3a+1).12、【解析】
首先根據(jù)算術(shù)平方根的定義計算先=2,再求2的算術(shù)平方根即可.【詳解】∵=2,∴的算術(shù)平方根為.【點(diǎn)睛】本題考查了算術(shù)平方根,屬于簡單題,熟悉算數(shù)平方根的概念是解題關(guān)鍵.13、【解析】
設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點(diǎn)睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.14、20【解析】
先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.
設(shè)這個圓錐形紙帽的底面半徑為r.
根據(jù)題意,得40π=2πr,
解得r=20cm.故答案是:20.【點(diǎn)睛】解答本題的關(guān)鍵是有確定底面周長=展開圖的弧長這個等量關(guān)系,然后由扇形的弧長公式和圓的周長公式求值.15、或.【解析】
①延長A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設(shè)AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點(diǎn),∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質(zhì)得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設(shè)AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【點(diǎn)睛】此題考查了勾股定理,三角形相似,關(guān)鍵在于做輔助線16、1【解析】解:原式==1.故答案為1.三、解答題(共8題,共72分)17、(1)CF與BD位置關(guān)系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結(jié)論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC=1,BC=3,CD=x,求線段CP的長.考慮點(diǎn)D的位置,分兩種情況去解答.①點(diǎn)D在線段BC上運(yùn)動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問題.②點(diǎn)D在線段BC延長線上運(yùn)動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點(diǎn)Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問題.【詳解】(1)CF與BD位置關(guān)系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結(jié)論成立.理由是:過點(diǎn)A作GA⊥AC交BC于點(diǎn)G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點(diǎn)A作AQ⊥BC交CB的延長線于點(diǎn)Q,①點(diǎn)D在線段BC上運(yùn)動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點(diǎn)D在線段BC延長線上運(yùn)動時,∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點(diǎn)睛】綜合性題型,解題關(guān)鍵是靈活運(yùn)用所學(xué)全等、相似、正方形等知識點(diǎn).18、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達(dá)到500元.【解析】
(1)此題可以按等量關(guān)系“每天的銷售利潤=(銷售價﹣進(jìn)價)×每天的銷售量”列出函數(shù)關(guān)系式,并由售價大于進(jìn)價,且銷售量大于零求得自變量的取值范圍.(2)根據(jù)(1)所得的函數(shù)關(guān)系式,利用配方法求二次函數(shù)的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關(guān)系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達(dá)到500元.【點(diǎn)睛】本題考查了二次函數(shù)在實際生活中的應(yīng)用,解答本題的關(guān)鍵是根據(jù)等量關(guān)系:“每天的銷售利潤=(銷售價﹣進(jìn)價)×每天的銷售量”列出函數(shù)關(guān)系式,另外要熟練掌握二次函數(shù)求最值的方法.19、(1)直線的表達(dá)式為,雙曲線的表達(dá)方式為;(2)點(diǎn)P的坐標(biāo)為或【解析】分析:(1)將點(diǎn)B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據(jù)直線解析式求得點(diǎn)A坐標(biāo),由S△ACP=AC?|yP|=4求得點(diǎn)P的縱坐標(biāo),繼而可得答案.詳解:(1)∵直線與雙曲線()都經(jīng)過點(diǎn)B(-1,4),,,∴直線的表達(dá)式為,雙曲線的表達(dá)方式為.(2)由題意,得點(diǎn)C的坐標(biāo)為C(-1,0),直線與x軸交于點(diǎn)A(3,0),,∵,,點(diǎn)P在雙曲線上,∴點(diǎn)P的坐標(biāo)為或.點(diǎn)睛:本題主要考查反比例函數(shù)和一次函數(shù)的交點(diǎn)問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積是解題的關(guān)鍵.20、繩索長為20尺,竿長為15尺.【解析】
設(shè)索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,對折索子來量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.【詳解】設(shè)繩索長、竿長分別為尺,尺,依題意得:解得:,.答:繩索長為20尺,竿長為15尺.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.21、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數(shù)量關(guān)系:【解析】
(1)先利用等腰三角形的性質(zhì)和三角形內(nèi)角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質(zhì)得到DA平分∠BAC,再根據(jù)角平分線性質(zhì)得到DE=DF,根據(jù)四邊形內(nèi)角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據(jù)正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數(shù)量關(guān)系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).22、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時,設(shè)正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點(diǎn)P的路徑是一段以AD為直徑的圓,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時出發(fā),以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年某科技公司2024云計算服務(wù)與支持合同
- 直縮法PET課程設(shè)計
- 溫度測量及顯示課程設(shè)計
- 微型電子稱課程設(shè)計
- 私房烘焙面包課程設(shè)計
- 畫眉紋繡課程設(shè)計
- 幼兒課程設(shè)計閱讀
- 平面模特拍攝合同中的賠償條款
- 熱處理定子鐵心課程設(shè)計
- 現(xiàn)代控制理論課程設(shè)計
- 2024-2030年中國電子駐車制動器(EPB)行業(yè)發(fā)展現(xiàn)狀及前景趨勢研究報告
- 期中 (試題) -2024-2025學(xué)年人教PEP版英語六年級上冊
- 2025蛇年元旦新年晚會蛇年獻(xiàn)歲模板
- 帶式輸送機(jī)機(jī)械設(shè)計課程設(shè)計(帶式輸送機(jī))
- 油氣管道泄漏事故應(yīng)急處理方案
- 部編版五年級語文上冊快樂讀書吧測試題及答案
- 三方代收款委托協(xié)議書范文
- 中國近代人物研究學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 變壓器搬遷施工方案
- 建筑施工安全風(fēng)險辨識分級管控指南494條-副本
- 橙子主題課程設(shè)計
評論
0/150
提交評論