2025屆安徽省宣城市第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁
2025屆安徽省宣城市第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁
2025屆安徽省宣城市第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁
2025屆安徽省宣城市第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁
2025屆安徽省宣城市第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省宣城市第十三中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線與圓相切,則()A. B. C. D.或2.已知兩條直線,,兩個平面,,下面說法正確的是()A. B. C. D.3.在中秋的促銷活動中,某商場對9月14日9時到14時的銷售額進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為萬元,則10時到11時的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元4.在平行四邊形中,,,則點的坐標(biāo)為()A. B. C. D.5.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.6.以兩點A(-3,-1)和B(5,5)為直徑端點的圓的標(biāo)準(zhǔn)方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=257.點到直線的距離是()A. B. C.3 D.8.已知奇函數(shù)滿足,則的取值不可能是()A.2 B.4 C.6 D.109.已知為遞增等比數(shù)列,則()A. B.5 C.6 D.10.向量,,,滿足條件.,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列中,,,則數(shù)列通項___________12.?dāng)?shù)列滿足,設(shè)為數(shù)列的前項和,則__________.13.設(shè)函數(shù)的最小值為,則的取值范圍是___________.14.設(shè)數(shù)列滿足,且,則數(shù)列的前n項和_______________.15.已知角的終邊經(jīng)過點,若,則______.16.等差數(shù)列,的前項和分別為,,且,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為,已知,.(1)求的值;(2)若,求周長的取值范圍.18.已知函數(shù),為實數(shù).(1)若對任意,都有成立,求實數(shù)的值;(2)若,求函數(shù)的最小值.19.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.20.已知,,函數(shù).(1)求在區(qū)間上的最大值和最小值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.21.已知向量.(1)若,求的值;(2)記函數(shù),求的最大值及單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

本題首先可根據(jù)圓的方程確定圓心以及半徑,然后根據(jù)直線與圓相切即可列出算式并通過計算得出結(jié)果?!驹斀狻坑深}意可知,圓方程為,所以圓心坐標(biāo)為,圓的半徑,因為直線與圓相切,所以圓心到直線距離等于半徑,即解得或,故選D。【點睛】本題考查根據(jù)直線與圓相切求參數(shù),考查根據(jù)圓的方程確定圓心與半徑,若直線與圓相切,則圓心到直線距離等于半徑,考查推理能力,是簡單題。2、D【解析】

滿足每個選項的條件時能否找到反例推翻結(jié)論即可?!驹斀狻緼:當(dāng)m,n中至少有一條垂直交線才滿足。B:很明顯m,n還可以異面直線不平行。C:只有當(dāng)m垂直交線時,否則不成立。故選:D【點睛】此題考查直線和平面位置關(guān)系,一般通過反例排除法即可解決,屬于較易題目。3、C【解析】分析:先根據(jù)12時到14時的銷售額為萬元求出總的銷售額,再求10時到11時的銷售額.詳解:設(shè)總的銷售額為x,則.10時到11時的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時到11時的銷售額為.故答案為C.點睛:(1)本題主要考查頻率分布直方圖求概率、頻數(shù)和總數(shù),意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.4、A【解析】

先求,再求,即可求D坐標(biāo)【詳解】,∴,則D(6,1)故選A【點睛】本題考查向量的坐標(biāo)運算,熟記運算法則,準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題5、D【解析】

運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進(jìn)行合理排除.【詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【點睛】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.6、D【解析】分析:由條件求出圓心坐標(biāo)和半徑的值,從而得出結(jié)論.詳解:圓心坐標(biāo)為(1,2),半徑r==5,故所求圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=25.故選D.點睛:本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.7、D【解析】

根據(jù)點到直線的距離求解即可.【詳解】點到直線的距離是.故選:D【點睛】本題主要考查了點到線的距離公式,屬于基礎(chǔ)題.8、B【解析】

由三角函數(shù)的奇偶性和對稱性可求得參數(shù)的值.【詳解】由是奇函數(shù)得又因為得關(guān)于對稱,所以,解得所以當(dāng)時,得A答案;當(dāng)時,得C答案;當(dāng)時,得D答案;故選B.【點睛】本題考查三角函數(shù)的奇偶性和對稱性,屬于基礎(chǔ)題.9、D【解析】

設(shè)數(shù)列的公比為,根據(jù)等比數(shù)列的性質(zhì),得,又由,求得,進(jìn)而可求解的值,得到答案.【詳解】根據(jù)題意,等比數(shù)列中,設(shè)其公比為,因為,則有,又由,且,解得,所以,所以,故選D.【點睛】本題主要考查了等比數(shù)列的通項公式和等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、C【解析】向量,則,故解得.故答案為:C。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項,以為公差的等差數(shù)列,∴,∴.故答案為.點睛:在求數(shù)列公式中,除直接應(yīng)用等差數(shù)列和等比數(shù)列的通項公式外,還有一種常用方法:對遞推式化簡變形,可構(gòu)造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.12、【解析】

先利用裂項求和法將數(shù)列的通項化簡,并求出,由此可得出的值.【詳解】,.,因此,,故答案為:.【點睛】本題考查裂項法求和,要理解裂項求和法對數(shù)列通項結(jié)構(gòu)的要求,并熟悉裂項法求和的基本步驟,考查計算能力,屬于中等題.13、.【解析】

確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,14、【解析】令15、【解析】

利用三角函數(shù)的定義可求.【詳解】由三角函數(shù)的定義可得,故.故答案為:.【點睛】本題考查三角函數(shù)的定義,注意根據(jù)正弦的定義構(gòu)建關(guān)于的方程,本題屬于基礎(chǔ)題.16、【解析】

取,代入計算得到答案.【詳解】,當(dāng)時故答案為【點睛】本題考查了前項和和通項的關(guān)系,取是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3;(2).【解析】

(1)先用二倍角公式化簡,再根據(jù)正弦定理即可解出;(2)用正弦定理分別表示,再用三角形內(nèi)角和及和差公式化簡,轉(zhuǎn)化為三角函數(shù)求最值.【詳解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周長:,又因為,所以.因此周長的取值范圍是.【點睛】本題考查了正余弦定理解三角形,三角形求邊長取值范圍常用的方法:1、轉(zhuǎn)化為三角函數(shù)求最值;2、基本不等式.18、(1);(2).【解析】

(1)根據(jù)二次函數(shù)的解析式寫出對稱軸即可;(2)根據(jù)對稱軸是否在定義域內(nèi)進(jìn)行分類討論,由二次函數(shù)的圖象可分別得出函數(shù)的最小值.【詳解】(1)對任意,都有成立,則函數(shù)的對稱軸為,即,解得實數(shù)的值為.(2)二次函數(shù),開口向上,對稱軸為①若,即時,函數(shù)在上單調(diào)遞增,的最小值為;②若,即時,函數(shù)在上單調(diào)遞減,的最小值為;③若,即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,的最小值為;綜上可得:【點睛】本題考查二次函數(shù)的圖象與性質(zhì),應(yīng)用了分類討論的思想,屬于中檔題.19、(1);(2),.【解析】

(1)先求出公差和首項,可得通項公式;(2)由(1)可得前項和,由二次函數(shù)性質(zhì)可得最小值(只要注意取正整數(shù)).【詳解】(1)設(shè)的公差為,由題意得,,解得,.所以的通項公式為.(2)由(1)得因為所以當(dāng)或時,取得最小值,最小值為-30.【點睛】本題考查等差數(shù)列的通項公式和前項和公式,方法叫基本量法.20、(1)(2)【解析】

(1)利用向量的數(shù)量積化簡即可得,再根據(jù),求出的范圍結(jié)合圖像即可解決.(2)根據(jù)(1)求出,再根據(jù)正弦函數(shù)的單調(diào)性求出的單調(diào)區(qū)間即可.【詳解】解:(1)因為所以,所以,所以(2)解法一:令得因為函數(shù)在上是單調(diào)遞增函數(shù),所以存在,使得,所以有因為,所以所以,又因為,得所以從而有所以,所以解法二:由,得因為所以所以解得又所以【點睛】本題主要考查了正弦函數(shù)在給定區(qū)間是的最值以及根據(jù)根據(jù)函數(shù)的單調(diào)性求參數(shù).屬于中等題,解決本題的關(guān)鍵是記住正弦函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論