2025屆重慶市第三十中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆重慶市第三十中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆重慶市第三十中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆重慶市第三十中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆重慶市第三十中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市第三十中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則的坐標是()A. B. C. D.2.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.3.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為()A.-12 B.-14 C.10 D.84.下列敘述中,不能稱為算法的是()A.植樹需要運苗、挖坑、栽苗、澆水這些步驟B.按順序進行下列運算:1+1=2,2+1=3,3+1=4,…,99+1=100C.從濟南到北京旅游,先坐火車,再坐飛機抵達D.3x>x+15.如下圖,在四棱錐中,平面ABCD,,,,則異面直線PA與BC所成角的余弦值為()A. B. C. D.6.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進行統(tǒng)計后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在[30,40)一組的概率為17.在等比數(shù)列中,,,則()A. B.3 C. D.18.己知某三棱錐的三視圖如圖所示,其中正視圖和側視圖都是邊長為2的等邊三角形,則該三棱錐的體積為()A. B. C. D.9.已知內(nèi)角的對邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形10.已知直線l和平面,若直線l在空間中任意放置,則在平面內(nèi)總有直線和A.垂直 B.平行 C.異面 D.相交二、填空題:本大題共6小題,每小題5分,共30分。11.設()則數(shù)列的各項和為________12.已知數(shù)列的通項公式,那么使得其前項和大于7.999的的最小值為______.13.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每人所得份量成等差數(shù)列,且較大的三份之和的是較小的兩份之和,則最小一份的量為___.14.若,則______.15.把數(shù)列的所有數(shù)按照從大到小的原則寫成如下數(shù)表:第行有個數(shù),第行的第個數(shù)(從左數(shù)起)記為,則________.16.已知,向量的夾角為,則的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知定義在上的函數(shù)的圖象如圖所示(1)求函數(shù)的解析式;(2)寫出函數(shù)的單調(diào)遞增區(qū)間(3)設不相等的實數(shù),,且,求的值.18.設全集為,集合,集合.(Ⅰ)求;(Ⅱ)若,求實數(shù)的取值范圍.19.隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:年份

2010

2011

2012

2013

2014

時間代號

1

2

3

4

5

儲蓄存款(千億元)

5

6

7

8

10

(Ⅰ)求y關于t的回歸方程(Ⅱ)用所求回歸方程預測該地區(qū)2015年()的人民幣儲蓄存款.附:回歸方程中20.已知等比數(shù)列的前項和為,,,且.(1)求的通項公式;(2)是否存在正整數(shù),使得成立?若存在,求出的最小值;若不存在,請說明理由.21.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;(3)設,記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

,.故選C.2、B【解析】

過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應用和正弦定理,考查了轉化思想,屬中檔題.3、A【解析】

由直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【詳解】∵直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,垂足為(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案為:A【點睛】本題考查實數(shù)值的求法,考查直線與直線垂直的性質(zhì)等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.4、D【解析】

利用算法的定義來分析判斷各選項的正確與否,即可求解,得到答案.【詳解】由算法的定義可知,算法、程序是完成一件事情的可操作的步驟:可得A、B、C為算法,D沒有明確的規(guī)則和步驟,所以不是算法,故選D.【點睛】本題主要考查了算法的概念,其中解答的關鍵是理解算法的概念,由概念作出正確的判斷,著重考查了分析問題和解答問題的能力,屬于基礎題.5、B【解析】

作出異面直線PA與BC所成角,結合三角形的知識可求.【詳解】取的中點,連接,如圖,因為,,所以四邊形是平行四邊形,所以;所以或其補角是異面直線PA與BC所成角;設,則,;因為,所以;因為平面ABCD,所以,在三角形中,.故選:B.【點睛】本題主要考查異面直線所成角的求解,作出異面直線所成角,結合三角形知識可求.側重考查直觀想象的核心素養(yǎng).6、C【解析】

根據(jù)頻率分布直方圖逐一計算分析.【詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【點睛】本題考查利用頻率分布直方圖求解相關量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率7、C【解析】

根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列,故.故選:C【點睛】本題主要考查了等比數(shù)列性質(zhì)求解某項的方法,屬于基礎題.8、B【解析】

先找到三視圖對應的幾何體原圖,再求幾何體的體積.【詳解】由題得三視圖對應的幾何體原圖是如圖所示的三棱錐A-BCD,所以幾何體的體積為.故選B【點睛】本題主要考查三視圖找到幾何體原圖,考查三棱錐體積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9、B【解析】

根據(jù)正弦定理可得和,然后對進行分類討論,結合三角形的性質(zhì),即可得到結果.【詳解】在中,因為,所以,又,所以,又當時,因為,所以時等邊三角形;當時,因為,所以不存在,綜上:一定是等邊三角形.故選:B.【點睛】本題主要考查了正弦定理的應用,解題過程中注意兩解得情況,一般需要檢驗,本題屬于基礎題.10、A【解析】

本題可以從直線與平面的位置關系入手:直線與平面的位置關系可以分為三種:直線在平面內(nèi)、直線與平面相交、直線與平面平行,在這三種情況下再討論平面中的直線與已知直線的關系,通過比較可知:每種情況都有可能垂直.【詳解】當直線l與平面相交時,平面內(nèi)的任意一條直線與直線l的關系只有兩種:異面、相交,此時就不可能平行了,故B錯.當直線l與平面平行時,平面內(nèi)的任意一條直線與直線l的關系只有兩種:異面、平行,此時就不可能相交了,故D錯.當直線a在平面內(nèi)時,平面內(nèi)的任意一條直線與直線l的關系只有兩種:平行、相交,此時就不可能異面了,故C錯.不管直線l與平面的位置關系相交、平行,還是在平面內(nèi),都可以在平面內(nèi)找到一條直線與直線垂直,因為直線在異面與相交時都包括垂直的情況,故A正確.故選:A.【點睛】本題主要考查了空間中直線與直線之間的位置關系,空間中直線與平面之間的位置關系,考查空間想象能力和思維能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)無窮等比數(shù)列的各項和的計算方法,即可求解,得到答案.【詳解】由題意,數(shù)列的通項公式為,且,所以數(shù)列的各項和為.故答案為:.【點睛】本題主要考查了無窮等比數(shù)列的各項和的求解,其中解答中熟記無窮等比數(shù)列的各項和的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、1【解析】

直接利用數(shù)列的通項公式,建立不等式,解不等式求出結果.【詳解】解:數(shù)列的通項公式,則:,所以:當時,即:,當時,成立,即:的最小值為1.故答案為:1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.13、【解析】

設此等差數(shù)列為{an},公差為d,則(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份為a1,故答案為.14、【解析】

,則,故答案為.15、【解析】

第行有個數(shù)知每行數(shù)的個數(shù)成等比數(shù)列,要求,先要求出,就必須求出前行一共出現(xiàn)了多少個數(shù),根據(jù)等比數(shù)列的求和公式可求,而由可知,每一行數(shù)的分母成等差數(shù)列,可求出,令,即可求出.【詳解】由第行有個數(shù),可知每一行數(shù)的個數(shù)成等比數(shù)列,首項是,公比是,所以,前行共有個數(shù),所以,第行第一個數(shù)為,,因此,.故答案為:.【點睛】本題考查數(shù)列的性質(zhì)和應用,解題時要注意數(shù)陣的應用,同時要找出數(shù)陣的規(guī)律,考查推理能力,屬于中等題.16、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3);【解析】

(1)根據(jù)函數(shù)的最值可得,周期可得,代入最高點的坐標可得,從而可得解析式;(2)利用正弦函數(shù)的遞增區(qū)間可解得;(3)利用在內(nèi)的解就是和,即可得到結果.【詳解】(1)由函數(shù)的圖象可得,又因為函數(shù)的周期,所以,因為函數(shù)的圖象經(jīng)過點,即,所以,即,所以.(2)由,可得,可得函數(shù)的單調(diào)遞增區(qū)間為:,(3)因為,所以,又因為可得,所以或,解得或,、因為且,,所以.【點睛】本題考查了由圖象求解析式,考查了正弦函數(shù)的遞增區(qū)間,考查了由函數(shù)值求角,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】

(1)化簡集合,按并集的定義,即可求解;(2)得,結合數(shù)軸,確定集合端點位置,即可求解.【詳解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由題意知,∴,解得,∴實數(shù)的取值范圍是.【點睛】本題考查集合間的運算,考查集合的關系求參數(shù),屬于基礎題.19、(Ⅰ),(Ⅱ)千億元.【解析】試題分析:(Ⅰ)列表分別計算出,的值,然后代入求得,再代入求出值,從而就可得到回歸方程,(Ⅱ)將代入回歸方程可預測該地區(qū)2015年的人民幣儲蓄存款.試題解析:(1)列表計算如下i

1

1

5

1

5

2

2

6

4

12

3

3

7

9

21

4

4

8

16

32

5

5

10

25

50

15

36

55

120

這里又從而.故所求回歸方程為.(2)將代入回歸方程可預測該地區(qū)2015年的人民幣儲蓄存款為考點:線性回歸方程.20、(1);(2)存在,【解析】

(1)根據(jù)條件求解出公比,然后寫出等比數(shù)列通項;(2)先表示出,然后考慮的的最小值.【詳解】(1)因為,所以或,又,則,所以;(2)因為,則,當為偶數(shù)時有不符合;所以為奇數(shù),且,,所以且為奇數(shù),故.【點睛】本題考查等比數(shù)列通項及其前項和的應用,難度一般.對于公比為負數(shù)的等比數(shù)列,分析前項和所滿足的不等式時,注意分類討論,因此的奇偶會影響的正負.21、(1);(2)m的取值集合或}(3)存在,【解析】

(1)利用奇函數(shù)的性質(zhì)得到關于實數(shù)k的方程,解方程即可,注意驗證所得的結

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論