版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省山江湖協(xié)作體新高考數(shù)學(xué)四模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.402.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.3.網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國(guó)的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場(chǎng)占有率(單位:%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測(cè)該款手機(jī)市場(chǎng)占有率的變化趨勢(shì),則最早何時(shí)該款手機(jī)市場(chǎng)占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月4.在三角形中,,,求()A. B. C. D.5.如圖,在平行四邊形中,對(duì)角線與交于點(diǎn),且,則()A. B.C. D.6.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.7.已知集合,則的值域?yàn)椋ǎ〢. B. C. D.8.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.269.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.410.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.811.若,則的虛部是()A. B. C. D.12.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)、滿足約束條件,若的最小值是,則的值為__________.14.設(shè)函數(shù)在區(qū)間上的值域是,則的取值范圍是__________.15.集合,,則_____.16.已知為拋物線:的焦點(diǎn),過作兩條互相垂直的直線,,直線與交于、兩點(diǎn),直線與交于、兩點(diǎn),則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.18.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動(dòng)直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長(zhǎng)度最小時(shí),求s的值.19.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項(xiàng)和為,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前n項(xiàng)和,求.20.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長(zhǎng)為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點(diǎn),求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.21.(12分)設(shè)為拋物線的焦點(diǎn),,為拋物線上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn).(Ⅰ)若點(diǎn)在線段上,求的最小值;(Ⅱ)當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.22.(10分)在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點(diǎn).(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.2、B【解析】
先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.3、C【解析】
根據(jù)圖形,計(jì)算出,然后解不等式即可.【詳解】解:,點(diǎn)在直線上,令因?yàn)闄M軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點(diǎn)睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實(shí)際應(yīng)用,基礎(chǔ)題.4、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.5、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時(shí),合理選擇基底會(huì)給解題帶來方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.6、C【解析】
由題意可得面,可知,因?yàn)椋瑒t面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡(jiǎn)單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.7、A【解析】
先求出集合,化簡(jiǎn)=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域?yàn)楣蔬xA【點(diǎn)睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題8、D【解析】
利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點(diǎn)睛】本題考查組合的應(yīng)用,此類問題注意實(shí)際問題的合理轉(zhuǎn)化,本題屬于容易題.9、D【解析】
如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.11、D【解析】
通過復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.12、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出滿足條件的平面區(qū)域,求出交點(diǎn)的坐標(biāo),由得,顯然直線過時(shí),最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點(diǎn).由得,顯然當(dāng)直線過時(shí),該直線軸上的截距最小,此時(shí)最小,,解得.故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.14、.【解析】
配方求出頂點(diǎn),作出圖像,求出對(duì)應(yīng)的自變量,結(jié)合函數(shù)圖像,即可求解.【詳解】,頂點(diǎn)為因?yàn)楹瘮?shù)的值域是,令,可得或.又因?yàn)楹瘮?shù)圖象的對(duì)稱軸為,且,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查函數(shù)值域,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15、【解析】
分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因?yàn)楸硎緸槠鏀?shù),故.故答案為:【點(diǎn)睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡(jiǎn)單題.16、16.【解析】由題意可知拋物線的焦點(diǎn),準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點(diǎn)由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為16點(diǎn)睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運(yùn)算化繁為簡(jiǎn).“看到準(zhǔn)線想焦點(diǎn),看到焦點(diǎn)想準(zhǔn)線”,這是解決拋物線焦點(diǎn)弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個(gè)公共點(diǎn)知,即可得到,的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到,.當(dāng)時(shí),設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達(dá)式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時(shí),四邊形是矩形,即可得出的最大值.【詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,化簡(jiǎn)得:.
設(shè),,當(dāng)時(shí),設(shè)直線的傾斜角為,則,,,,∴當(dāng)時(shí),,,.當(dāng)時(shí),四邊形是矩形,.
所以四邊形面積的最大值為2.【點(diǎn)睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識(shí)、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證以及分析問題、解決問題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.18、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即AB取得最小值此時(shí).【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.19、(1),;(2).【解析】
(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項(xiàng)公式;(2)奇數(shù)項(xiàng)分一組用裂項(xiàng)相消法求和,偶數(shù)項(xiàng)分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時(shí),,為偶數(shù)時(shí),,∴.【點(diǎn)睛】本題考查求等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查分組求和法及裂項(xiàng)相消法、等差數(shù)列與等比數(shù)列的前項(xiàng)和公式,求通項(xiàng)公式采取的是基本量法,即求出公差、公比,由通項(xiàng)公式前項(xiàng)和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問題,對(duì)不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯(cuò)位相減法,裂項(xiàng)相消法,分組(并項(xiàng))求和法,倒序相加法等等.20、(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因?yàn)樗倪呅螢榱庑危?因?yàn)槠矫嫫矫?,平面平面,平面,,所以平?又平面,所以.因?yàn)椋?因?yàn)?,所以平?因?yàn)榉謩e為,的中點(diǎn),所以,所以平面(2)設(shè),由(1)得平面.由,,得,.過點(diǎn)作,與的延長(zhǎng)線交于點(diǎn),取的中點(diǎn),連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因?yàn)闉槠叫兴倪呅?,所以,所以平?又因?yàn)?,所以平?因?yàn)椋云矫嫫矫?由(1),得平面,所以平面,所以.因?yàn)?,所以平面,所以是與平面所成角.因?yàn)?,,所以平面,平面,因?yàn)椋云矫嫫矫?所以,,解得.在梯形中,易證,分別以,,的正方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則,,,,,,由,及,得,所以,,.設(shè)平面的一個(gè)法向量為,由得令,得m=(3,1,2)設(shè)平面的一個(gè)法向量為,由得令,得.所以又因?yàn)槎娼鞘氢g角,所以二面角的余弦值是.21、(Ⅰ)(Ⅱ)【解析】
(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版國(guó)際貿(mào)易方式合同履行的稅務(wù)處理
- 二零二五年度餐飲集團(tuán)員工勞動(dòng)權(quán)益保護(hù)合同
- 二零二五年度飯店轉(zhuǎn)讓與餐飲安全管理體系合同
- 二零二五年度駕校入股與汽車行業(yè)人才輸送服務(wù)合同
- 二零二五年度驛站連鎖經(jīng)營(yíng)授權(quán)合同樣本
- 2024海陸多式聯(lián)運(yùn)國(guó)際合作合同版B版
- 二零二五年度高端住宅車位出租合同協(xié)議
- 二零二五年度高空安全作業(yè)合同(高空建筑玻璃更換協(xié)議)
- 物流企業(yè)2025年度保密協(xié)議合同(冷鏈運(yùn)輸)
- 2025年度食堂炊事員食品安全責(zé)任聘用合同范本3篇
- 中儲(chǔ)糧黑龍江分公司社招2025年學(xué)習(xí)資料
- 2025年度愛讀書學(xué)長(zhǎng)策劃的讀書講座系列合同2篇
- 廣東省深圳市寶安區(qū)2024-2025學(xué)年八年級(jí)英語上學(xué)期1月期末英語試卷(含答案)
- 《設(shè)備房管理標(biāo)準(zhǔn)》課件
- 《交通運(yùn)輸行業(yè)安全生產(chǎn)監(jiān)督檢查工作指南 第2部分:道路運(yùn)輸》
- 初二生物期末質(zhì)量分析及整改措施
- 蘇州工業(yè)園區(qū)ESG發(fā)展白皮書
- 《邊緣計(jì)算單元與交通信號(hào)控制機(jī)的數(shù)據(jù)通信標(biāo)準(zhǔn)編制說明》
- 《安防攝像機(jī)智能化指標(biāo)要求和評(píng)估方法》
- 湖南省長(zhǎng)沙市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
評(píng)論
0/150
提交評(píng)論