湖南省瀏陽一中、株洲二中等湘東五校2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第1頁
湖南省瀏陽一中、株洲二中等湘東五校2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第2頁
湖南省瀏陽一中、株洲二中等湘東五校2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第3頁
湖南省瀏陽一中、株洲二中等湘東五校2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第4頁
湖南省瀏陽一中、株洲二中等湘東五校2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省瀏陽一中、株洲二中等湘東五校2025屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知一個扇形的圓心角為,半徑為1.則它的弧長為()A. B. C. D.2.《九章算術》是我國古代數(shù)學成就的杰出代表作之一,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦矢矢),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約為()A.12平方米 B.16平方米 C.20平方米 D.24平方米3.設,,則的值可表示為()A. B. C. D.4.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形5.已知平面向量滿足:,,,若,則的值為()A. B. C.1 D.-16.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡7.已知集合,則()A. B. C. D.8.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.9.方程的解所在的區(qū)間為()A. B.C. D.10.若,則是()A.等邊三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則當最大時,________.12.設的內角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.13.已知,,則______,______.14.已知則sin2x的值為________.15.某中學為了了解全校學生的閱讀情況,在全校采用隨機抽樣的方法抽取一個樣本進行問卷調查,并將他們在一個月內去圖書館的次數(shù)進行了統(tǒng)計,將學生去圖書館的次數(shù)分為5組:制作了如圖所示的頻率分布表,則抽樣總人數(shù)為_______.16.已知單位向量與的夾角為,且,向量與的夾角為,則=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列中,,點在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項;(3)設、分別為數(shù)列、的前項和是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.18.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.19.銳角的內角、、所對的邊分別為、、,若.(1)求;(2)若,,求的周長.20.大豆,古稱菽,原產(chǎn)中國,在中國已有五千年栽培歷史.2019年春,為響應中國大豆參與世界貿易的競爭,某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作,其中一項基礎工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關系.為此科研人員分別記錄了7天中每天50粒大豆的發(fā)芽數(shù)得如下數(shù)據(jù)表格:日期4月3日4月4日4月5日4月6日4月7日4月8日4月9日溫差(℃)89101211813發(fā)芽數(shù)(粒)21252632272033科研人員確定研究方案是:從7組數(shù)據(jù)中選5組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對剩下的2組數(shù)據(jù)進行檢驗.(1)若選取的是4月4日至4月8日五天數(shù)據(jù),據(jù)此求關于的線性回歸方程;(2)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)的誤差絕對值均不超過1粒,則認為得到的線性回歸方程是可靠的,請檢驗(1)中回歸方程是否可靠?注:.參考數(shù)值:,.21.某市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場的宣傳活動,應從第,,組各抽取多少名志愿者?(2)在(1)的條件下,該市決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組志愿者有被抽中的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

直接利用扇形弧長公式求解即可得到結果.【詳解】由扇形弧長公式得:本題正確選項:【點睛】本題考查扇形弧長公式的應用,屬于基礎題.2、C【解析】

在中,由題意OA=4,∠DAO=,即可求得OD,AD的值,根據(jù)題意可求矢和弦的值,即可利用公式計算求值得解.【詳解】如圖,由題意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面積=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故選:C【點睛】本題考查扇形的面積公式,考查數(shù)學閱讀能力和數(shù)學運算能力,屬于中檔題.3、A【解析】

由,可得到,然后根據(jù)反余弦函數(shù)的圖象與性質即可得到答案.【詳解】因為,所以,則.故選:A【點睛】本題主要考查反余弦函數(shù)的運用,熟練掌握反余弦函數(shù)的概念及性質是解決本題的關鍵.4、A【解析】

已知第一個等式利用正弦定理化簡,再利用誘導公式及內角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關鍵.5、C【解析】

將代入,化簡得到答案.【詳解】故答案選C【點睛】本題考查了向量的運算,意在考查學生的計算能力.6、B【解析】

概率的事件可以認為是概率為的對立事件.【詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【點睛】本題考查對立事件,解題關鍵是掌握對立事件的概率性質:即對立事件的概率和為1.7、A【解析】

由,得,然后根據(jù)集合的交集運算,即可得到本題答案.【詳解】因為,所以.故選:A【點睛】本題主要考查集合的交集運算及對數(shù)不等式.8、D【解析】試題分析:當時,該程序框圖所表示的算法功能為:,故選D.考點:程序框圖.9、B【解析】試題分析:由題意得,設函數(shù),則,所以,所以方程的解所在的區(qū)間為,故選B.考點:函數(shù)的零點.10、D【解析】

先根據(jù)題中條件,結合正弦定理得到,求出角,同理求出角,進而可判斷出結果.【詳解】因為,由正弦定理可得,所以,即,因為角為三角形內角,所以;同理,;所以,因此,是等腰直角三角形.故選D【點睛】本題主要考查判定三角形的形狀問題,熟記正弦定理即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)正切的和角公式,將用的函數(shù)表示出來,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【詳解】故可得則當且僅當,即時,此時有故答案為:.【點睛】本題考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.12、【解析】

由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點睛】本題主要考查余弦定理以及韋達定理,屬于中檔題.13、【解析】

由的值,可求出的值,再判斷角的范圍,可判斷出,進而將平方,可求出答案.【詳解】由題意,,因為,所以,即;又因為,所以,即,而,由于,可知,所以,則,即.故答案為:;.【點睛】本題考查同角三角函數(shù)基本關系的應用,考查二倍角公式的應用,考查學生的計算求解能力,屬于中檔題.14、【解析】

利用二倍角的余弦函數(shù)公式求出的值,再利用誘導公式化簡,將的值代入計算即可求出值.【詳解】解:∵,,則sin2x==,故答案為.【點睛】此題考查了二倍角的余弦函數(shù)公式,以及誘導公式的作用,熟練掌握公式是解本題的關鍵.15、20【解析】

總體人數(shù)占的概率是1,也可以理解成每個人在整體占的比重一樣,所以三組的頻率為:,共有14人,即14人占了整體的0.7,那么整體共有人?!驹斀狻壳叭M,即三組的頻率為:,,解得:【點睛】此題考查概率,通過部分占總體的概率即可計算出總體的樣本值,屬于簡單題目。16、【解析】試題分析:因為所以考點:向量數(shù)量積及夾角三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明過程見詳解;(2);(3)存在實數(shù),使得數(shù)列為等差數(shù)列.【解析】

(1)先由題意得到,再由,得到,即可證明結論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項;(3)把數(shù)列an}、{bn}通項公式代入an+2bn,進而得到Sn+2T的表達式代入Tn,進而推斷當且僅當λ=2時,數(shù)列是等差數(shù)列.【詳解】(1)因為點在直線上,所以,因此由得所以數(shù)列是以為公比的等比數(shù)列;(2)因為,由得,故,由(1)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使數(shù)列是等差數(shù)列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴當且僅當λ=2時,數(shù)列是等差數(shù)列.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記等比數(shù)列的定義,等比數(shù)列的通項公式,以及等差數(shù)列與等比數(shù)列的求和公式即可,屬于??碱}型.18、(1);(2).【解析】

(1)直接利用余弦定理,即可得到本題答案;(2)由四邊形ABCD的面積=,得四邊形ABCD的面積,求S的最大值即可得到本題答案.【詳解】(1)當時,在中,由余弦定理得,設(),則,即,解得,所以;(2)的面積為,在中,由余弦定理得,所以,的面積為,所以,四邊形的面積為,因為,所以當時,四邊形的面積最大,最大值為.【點睛】本題主要考查利用余弦定理、面積公式及三角函數(shù)的性質解決實際問題.19、(1);(2).【解析】

(1)利用正弦定理邊角互化思想,結合兩角和的正弦公式可計算出的值,結合為銳角,可得出角的值;(2)利用三角形的面積公式可求出,利用余弦定理得出,由此可得出的周長.【詳解】(1)依據(jù)題設條件的特點,由正弦定理,得,有,從而,解得,為銳角,因此,;(2),故,由余弦定理,即,,,故的周長為.【點睛】本題考查正弦定理邊角互化思想的應用,同時也考查余弦定理和三角形面積公式解三角形,要熟悉正弦定理和余弦定理解三角形所適用的基本類型,同時在解題時充分利用邊角互化思想,可以簡化計算,考查運算求解能力,屬于中等題.20、(1);(2)(1)中回歸方程是可靠的.【解析】

(1)運用已知題中所給的數(shù)值,結合所給的計算公式、數(shù)表提供的數(shù)據(jù)求得與的值,進而寫出線線回歸方程;(2)在(1)中求得的線性回歸方程中,分別取x=8與13求得y值,進一步求得殘差得結論.【詳解】因為,.,所以,.因此關于的線性回歸方程;(2)取x=8,得,此時;取x=13,得,此時∴(1)中回歸方程是可靠的.【點睛】本題考查線性回歸方程的求法,考查數(shù)學運算能力,屬于基礎題.21、(1)分別抽取人,人,人;(2)【解析】

(1)頻率分布直方圖各組頻率等于各組矩形的面積,進而算出各組頻數(shù),再根據(jù)分層抽樣總體及各層抽樣比例相同求解;(2)列出從名志愿者中隨機抽取名志愿者所有的情況,再根據(jù)古典概型

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論