版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省忻州一中、臨汾一中、精英中學(xué)、鄂爾多斯一中2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若變量,滿足約束條件,且的最大值為,最小值為,則的值是A. B.C. D.2.已知點(diǎn)是直線上一動(dòng)點(diǎn),與是圓的兩條切線,為切點(diǎn),則四邊形的最小面積為()A. B. C. D.3.直線與直線平行,則實(shí)數(shù)a的值為()A. B. C. D.64.在棱長(zhǎng)為1的正方體中,點(diǎn)在線段上運(yùn)動(dòng),則下列命題錯(cuò)誤的是()A.異面直線和所成的角為定值 B.直線和平面平行C.三棱錐的體積為定值 D.直線和平面所成的角為定值5.已知、是球的球面上的兩點(diǎn),,點(diǎn)為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.6.若變量滿足約束條件則的最大值為()A.4 B.3 C.2 D.17.已知過(guò)點(diǎn)的直線的傾斜角為,則直線的方程為()A. B. C. D.8.在△ABC中,a=3,b=3,A=,則C為()A. B. C. D.9.在等比數(shù)列中,若,則的值為()A. B. C. D.10.已知數(shù)列的前4項(xiàng)依次為,1,,,則該數(shù)列的一個(gè)通項(xiàng)公式可以是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場(chǎng)比賽,則田忌的馬獲勝的概率為_(kāi)_________.12.已知,且這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則_______________.13.已知函數(shù),若對(duì)任意都有()成立,則的最小值為_(kāi)_________.14.函數(shù)的值域是__________.15.若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在函數(shù)的圖像上,則稱點(diǎn)、直線及函數(shù)組成系統(tǒng),已知函數(shù)的反函數(shù)圖像過(guò)點(diǎn),且第一象限內(nèi)的點(diǎn)、直線及函數(shù)組成系統(tǒng),則代數(shù)式的最小值為_(kāi)_______.16.已知數(shù)列是等差數(shù)列,若,,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角,,的對(duì)邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.18.已知,,,求:的值.19.如圖所示,在中,點(diǎn)在邊上,,,,.(1)求的值;(2)求的面積.20.已知函數(shù),求其定義域.21.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】由,由,當(dāng)最大時(shí),最小,此時(shí)最小,,故選C.【點(diǎn)睛】本題除了做約束條件的可行域再平移求得正解這種常規(guī)解法之外,也可以采用構(gòu)造法解題,這就要求考生要有較強(qiáng)的觀察能力,或者采用設(shè)元求出構(gòu)造所學(xué)的系數(shù).2、A【解析】
利用當(dāng)與直線垂直時(shí),取最小值,并利用點(diǎn)到直線的距離公式計(jì)算出的最小值,然后利用勾股定理計(jì)算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當(dāng)取最小值時(shí),、也取得最小值,顯然當(dāng)與直線垂直時(shí),取最小值,且該最小值為點(diǎn)到直線的距離,即,此時(shí),,四邊形面積的最小值為,故選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查切線長(zhǎng)的計(jì)算以及四邊形的面積,本題在求解切線長(zhǎng)的最小值時(shí),要抓住以下兩點(diǎn):(1)計(jì)算切線長(zhǎng)應(yīng)利用勾股定理,即以點(diǎn)到圓心的距離為斜邊,切線長(zhǎng)與半徑為兩直角邊;(2)切線長(zhǎng)取最小值時(shí),點(diǎn)到圓心的距離也取到最小值.3、A【解析】
直接利用斜率相等列方程求解即可.【詳解】因?yàn)橹本€與直線平行,所以,故選:A.【點(diǎn)睛】本題主要考查兩直線平行的性質(zhì):斜率相等,屬于基礎(chǔ)題.4、D【解析】
結(jié)合條件和各知識(shí)點(diǎn)對(duì)四個(gè)選項(xiàng)逐個(gè)進(jìn)行分析,即可得解.【詳解】,在棱長(zhǎng)為的正方體中,點(diǎn)在線段上運(yùn)動(dòng)易得平面,平面,,故這兩個(gè)異面直線所成的角為定值,故正確,直線和平面平行,所以直線和平面平行,故正確,三棱錐的體積還等于三棱錐的體積,而平面為固定平面且大小一定,,而平面點(diǎn)到平面的距離即為點(diǎn)到該平面的距離,三棱錐的體積為定值,故正確,由線面夾角的定義,令與的交點(diǎn)為,可得即為直線和平面所成的角,當(dāng)移動(dòng)時(shí)這個(gè)角是變化的,故錯(cuò)誤故選【點(diǎn)睛】本題考查了異面直線所成角的概念、線面平行及線面角等,三棱錐的體積的計(jì)算可以進(jìn)行頂點(diǎn)輪換及線面平行時(shí),直線上任意一點(diǎn)到平面的距離都相等這一結(jié)論,即等體積法的轉(zhuǎn)換.5、A【解析】
當(dāng)點(diǎn)位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當(dāng)點(diǎn)位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),.因此,球的表面積為.故選:A.【點(diǎn)睛】本題考查球的半徑與表面積的計(jì)算,確定點(diǎn)的位置是關(guān)鍵,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.6、B【解析】
先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值.【詳解】作出約束條件,所對(duì)應(yīng)的可行域(如圖陰影部分)變形目標(biāo)函數(shù)可得,平移直線可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最小,代值計(jì)算可得取最大值故選B.【點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.7、B【解析】
由直線的傾斜角求得直線的斜率,再由直線的點(diǎn)斜式方程求解.【詳解】∵直線的傾斜角為,∵直線的斜率,又直線過(guò)點(diǎn),由直線方程的點(diǎn)斜式可得直線的方程為,即.故選:B.【點(diǎn)睛】本題考查直線的點(diǎn)斜式方程,考查直線的傾斜角與斜率的關(guān)系,是基礎(chǔ)題.8、C【解析】
由正弦定理先求出的值,然后求出結(jié)果【詳解】在中,,則故選【點(diǎn)睛】本題運(yùn)用正弦定理解三角形,熟練運(yùn)用公式即可求出結(jié)果,較為簡(jiǎn)單。9、B【解析】
根據(jù)等比數(shù)列的性質(zhì):若,則.【詳解】等比數(shù)列中,,,故選B.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和性質(zhì),此題也可用通項(xiàng)公式求解.10、A【解析】
根據(jù)各選擇項(xiàng)求出數(shù)列的首項(xiàng),第二項(xiàng),用排除法確定.【詳解】可用排除法,由數(shù)列項(xiàng)的正負(fù)可排除B,D,再看項(xiàng)的絕對(duì)值,在C中不合題意,排除C,只有A.可選.故選:A.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,已知數(shù)列的前幾項(xiàng),選擇一個(gè)通項(xiàng)公式,比較方便,可以利用通項(xiàng)公式求出數(shù)列的前幾項(xiàng),把不合的排除即得.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】分析:由題意結(jié)合古典概型計(jì)算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點(diǎn)睛:有關(guān)古典概型的概率問(wèn)題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時(shí),用列舉法把所有基本事件一一列出時(shí),要做到不重復(fù)、不遺漏,可借助“樹(shù)狀圖”列舉.(2)注意區(qū)分排列與組合,以及計(jì)數(shù)原理的正確使用.12、5【解析】
試題分析:由題意得,為等差數(shù)列時(shí),一定為等差中項(xiàng),即,為等比數(shù)列時(shí),-2為等比中項(xiàng),即,所以.考點(diǎn):等差,等比數(shù)列的性質(zhì)13、【解析】
根據(jù)和的取值特點(diǎn),判斷出兩個(gè)值都是最值,然后根據(jù)圖象去確定最小值.【詳解】因?yàn)閷?duì)任意成立,所以取最小值,取最大值;取最小值時(shí),與必為同一周期內(nèi)的最小值和最大值的對(duì)應(yīng)的,則,且,故.【點(diǎn)睛】任何一個(gè)函數(shù),若有對(duì)任何定義域成立,此時(shí)必有:,.14、【解析】
根據(jù)反余弦函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),代入即可求解.【詳解】由題意,函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),又由,所以函數(shù)在的值域?yàn)椋蚀鸢笧椋?【點(diǎn)睛】本題主要考查了反余弦函數(shù)的單調(diào)性的應(yīng)用,其中解答中熟記反余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)函數(shù)的反函數(shù)圖像過(guò)點(diǎn)可求出,由、直線及函數(shù)組成系統(tǒng)可知在的圖象上,且,代入化簡(jiǎn)為,換元?jiǎng)t,利用單調(diào)性求解.【詳解】因?yàn)楹瘮?shù)的反函數(shù)圖像過(guò)點(diǎn),所以,即,由、直線及函數(shù)組成系統(tǒng)知在上,所以,代入化簡(jiǎn)得,令由知,故則在上單調(diào)遞減,所以當(dāng)即時(shí),,故填.【點(diǎn)睛】本題主要考查了對(duì)稱問(wèn)題,反函數(shù)概念,根據(jù)條件求最值,函數(shù)的單調(diào)性,換元法,綜合性大,難度大,屬于難題.16、【解析】
求出公差,利用通項(xiàng)公式即可求解.【詳解】設(shè)公差為,則所以故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函數(shù)的圖像和性質(zhì)求解.【詳解】(1)因?yàn)?,所以,由正弦定理化角為邊可得,即,由余弦定理可得,又,所以.?)由(1)可得,設(shè)的外接圓的半徑為,因?yàn)?,,所以,則,因?yàn)闉殇J角三角形,所以,即,所以,所以,所以,故的取值范圍為.【點(diǎn)睛】(1)本題主要考查正弦定理余弦定理解三角形,考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)對(duì)于復(fù)合函數(shù)的問(wèn)題自然是利用復(fù)合函數(shù)的性質(zhì)解答,求復(fù)合函數(shù)的最值,一般從復(fù)合函數(shù)的定義域入手,結(jié)合三角函數(shù)的圖像一步一步地推出函數(shù)的最值.18、【解析】
求出和的取值范圍,利用同角三角函數(shù)的基本關(guān)系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點(diǎn)睛】本題考查利用兩角差的余弦公式求值,解題的關(guān)鍵就是利用已知角來(lái)表示所求角,考查計(jì)算能力,屬于中等題.19、(1)(2)【解析】
(1)設(shè),分別在和中利用余弦定理計(jì)算,聯(lián)立方程組,求得的值,再由余弦定理,即可求解的值;(2)由(1)的結(jié)論,計(jì)算,利用三角形的面積公式,即可求解.【詳解】(1),則,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【點(diǎn)睛】本題主要考查了余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理列出方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、【解析】
由使得分式和偶次根式有意義的要求可得到一元二次不等式,解不等式求得結(jié)果.【詳解】由題意得:,即,解得:定義域?yàn)椤军c(diǎn)睛】本題考查具體函數(shù)定義域的求解問(wèn)題,關(guān)鍵是明確使得分式和偶次根式有意義的基本要求,由此構(gòu)造不等式求得結(jié)果.21、(1);(2).
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版托盤(pán)運(yùn)輸服務(wù)合同3篇
- 二零二五年度高速公路停車場(chǎng)地租賃及增值服務(wù)協(xié)議3篇
- 二零二五年度個(gè)人車位交易合同:明確車位使用年限及續(xù)約條件4篇
- 2017-2023年中國(guó)電力巡檢機(jī)器人行業(yè)市場(chǎng)專項(xiàng)調(diào)研及投資前景可行性預(yù)測(cè)報(bào)告(目錄)
- 大一新生班主任演講4篇
- 商鋪門面租賃合同15篇
- 二手電動(dòng)車轉(zhuǎn)讓買賣協(xié)議
- 石料采購(gòu)合同協(xié)議
- 2025-2030全球工況排放分析儀行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)云上基礎(chǔ)設(shè)施管理軟件行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 西方經(jīng)濟(jì)學(xué)(第二版)完整整套教學(xué)課件
- 人教版高一數(shù)學(xué)上冊(cè)期末考試試卷及答案
- 圍術(shù)期下肢深靜脈血栓預(yù)防的術(shù)中護(hù)理
- GB/T 12996-2012電動(dòng)輪椅車
- 三方采購(gòu)協(xié)議范本
- 《材料分析測(cè)試技術(shù)》全套教學(xué)課件
- 安全學(xué)原理第2版-ppt課件(完整版)
- 傾聽(tīng)是一種美德
- 武漢東湖賓館建設(shè)項(xiàng)目委托代建合同
- 巴布亞新幾內(nèi)亞離網(wǎng)光儲(chǔ)微網(wǎng)供電方案
- Flexsim物流系統(tǒng)建模與仿真ppt課件(完整版)
評(píng)論
0/150
提交評(píng)論