版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省部分重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在銳角中,內(nèi)角,,所對的邊分別為,,,若的面積為,且,則的周長的取值范圍是A. B.C. D.2.已知是不同的直線,是不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則3.中,角的對邊分別為,且,則角()A. B. C. D.4.已知是第三象限的角,若,則A. B. C. D.5.平面與平面平行的充分條件可以是()A.內(nèi)有無窮多條直線都與平行B.直線,,且直線a不在內(nèi),也不在內(nèi)C.直線,直線,且,D.內(nèi)的任何一條直線都與平行6.若函數(shù)的圖象可由函數(shù)的圖象向右平移個單位長度變換得到,則的解析式是()A. B.C. D.7.在直角坐標系中,已知點,則的面積為()A. B.4 C. D.88.將函數(shù)的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)解析式是A. B. C. D.9.甲乙兩名同學(xué)6次考試的成績統(tǒng)計如右圖,甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標準差分別為則()A. B.C. D.10.在中,角A,B,C的對邊分別為a,b,c.已知,,,則B為()A. B.或 C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________12.若各項均為正數(shù)的等比數(shù)列,,則它的前項和為______.13.方程的解集是__________.14.方程的解為______.15.在平面直角坐標系中,角的頂點在原點,始邊與軸的正半軸重合,終邊過點,則______16.光線從點射向y軸,經(jīng)過y軸反射后過點,則反射光線所在的直線方程是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,,其中實數(shù).(I)求證:數(shù)列是遞增數(shù)列;(II)當時.(i)求證:;(ii)若,設(shè)數(shù)列的前項和為,求整數(shù)的值,使得最?。?8.在中,角,,的對邊分別為,,,且.(1)求角的大?。唬?)若,的面積為,求邊的長.19.如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為(1)求的值;(2)求的值.20.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.21.已知函數(shù).(1)求不等式的解集;(2)若當時,恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
首先根據(jù)面積公式和余弦定理可將已知變形為,,然后根據(jù)正弦定理,將轉(zhuǎn)化為,利用,化簡為,再根據(jù)三角形是銳角三角形,得到的范圍,轉(zhuǎn)化為三角函數(shù)求取值范圍的問題.【詳解】因為的面積為,所以,所以,由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【點睛】本題考查了正余弦定理和三角形面積公式,以及輔助角公式和三角函數(shù)求取值范圍的問題,屬于中檔題型,本題需認真審題,當是銳角三角形時,需滿足三個角都是銳角,即.2、D【解析】
由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對于A選項,加上條件“”結(jié)論才成立;對于B選項,加上條件“直線和相交”結(jié)論才成立;對于C選項,加上條件“”結(jié)論才成立.故選:D【點睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎(chǔ)題.3、B【解析】
根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點睛】此題考查利用正弦定理進行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.4、D【解析】
根據(jù)是第三象限的角得,利用同角三角函數(shù)的基本關(guān)系,求得的值.【詳解】因為是第三象限的角,所以,因為,所以解得:,故選D.【點睛】本題考查余弦函數(shù)在第三象限的符號及同角三角函數(shù)的基本關(guān)系,即已知值,求的值.5、D【解析】
利用平面與平面平行的判定定理一一進行判斷,可得正確答案.【詳解】解:A選項,內(nèi)有無窮多條直線都與平行,并不能保證平面內(nèi)有兩條相交直線與平面平行,這無窮多條直線可以是一組平行線,故A錯誤;B選項,直線,,且直線a不在內(nèi),也不在內(nèi),直線a可以是平行平面與平面的相交直線,故不能保證平面與平面平行,故B錯誤;C選項,直線,直線,且,,當直線,同樣不能保證平面與平面平行,故C錯誤;D選項,內(nèi)的任何一條直線都與平行,則內(nèi)至少有兩條相交直線與平面平行,故平面與平面平行;故選:D.【點睛】本題主要考查平面與平面平行的判斷,解題時要認真審題,熟練掌握面與平面平行的判定定理,注意空間思維能力的培養(yǎng).6、A【解析】
先化簡函數(shù),然后再根據(jù)圖象平移得.【詳解】由已知,∴.故選A.【點睛】本題考查兩角和的正弦公式,考查三角函數(shù)的圖象平移變換,屬于基礎(chǔ)題.7、B【解析】
求出直線AB的方程及點C到直線AB的距離d,再求出,代入即可得解.【詳解】,即,點到直線的距離,,的面積為:.故選:B【點睛】本題考查直線的點斜式方程,點到直線的距離與兩點之間的距離公式,屬于基礎(chǔ)題.8、B【解析】
利用三角函數(shù)圖像平移原則,結(jié)合誘導(dǎo)公式,即可求解.【詳解】函數(shù)的圖象向右平移個單位長度得到.故選B.【點睛】本題考查三角圖像變換,誘導(dǎo)公式,熟記變換原則,準確計算是關(guān)鍵,是基礎(chǔ)題.9、C【解析】
利用甲、乙兩名同學(xué)6次考試的成績統(tǒng)計直接求解.【詳解】由甲乙兩名同學(xué)6次考試的成績統(tǒng)計圖知:甲組數(shù)據(jù)靠上,乙組數(shù)據(jù)靠下,甲組數(shù)據(jù)相對集中,乙組數(shù)據(jù)相對分散分散布,由甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標準差分別為得,.故選:.【點睛】本題考查命題真假的判斷,考查平均數(shù)、的定義和性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.10、C【解析】
根據(jù)正弦定理得到,再根據(jù)知,得到答案.【詳解】根據(jù)正弦定理:,即,根據(jù)知,故.故選:.【點睛】本題考查了根據(jù)正弦定理求角度,多解是容易發(fā)生的錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運算求解能力,求解時要注意等差數(shù)列性質(zhì)的合理運用.12、【解析】
利用等比數(shù)列的通項公式求出公比,由此能求出它的前項和.【詳解】設(shè)各項均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項和為.故答案:.【點睛】本題考查等比數(shù)列的前項和的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.13、【解析】
令,,將原方程化為關(guān)于的一元二次方程,解出得到,進而得出方程的解集.【詳解】令,,故原方程可化為,解得或,故而或,即方程的解集是,故答案為.【點睛】本題主要考查了指數(shù)方程的解法,轉(zhuǎn)化為一元二次方程是解題的關(guān)鍵,屬于基礎(chǔ)題.14、或【解析】
由指數(shù)函數(shù)的性質(zhì)得,由此能求出結(jié)果.【詳解】方程,,或,解得或.故答案為或.【點睛】本題考查指數(shù)方程的解的求法,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)的性質(zhì)的合理運用.15、-1【解析】
根據(jù)三角函數(shù)的定義求得,再代入的展開式進行求值.【詳解】角終邊過點,終邊在第三象限,根據(jù)三角函數(shù)的定義知:,【點睛】考查三角函數(shù)的定義及三角恒等變換,在變換過程中要注意符號的正負.16、(或?qū)懗桑窘馕觥?/p>
光線從點射向y軸,即反射光線反向延長線經(jīng)過關(guān)于y軸的對稱點,則反射光線通過和兩個點,設(shè)直線方程求解即可。【詳解】由題意可知,所求直線方程經(jīng)過點關(guān)于y軸的對稱點為,則所求直線方程為,即.【點睛】此題的關(guān)鍵點在于物理學(xué)上光線的反射光線和入射光線關(guān)于鏡面對稱,屬于基礎(chǔ)題目。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)證明見解析;(II)(i)證明見解析;(ii).【解析】
(I)通過計算,結(jié)合,證得數(shù)列是遞增數(shù)列.(II)(i)將轉(zhuǎn)化為,利用迭代法證得.(ii)由(i)得,從而,即.利用裂項求和法求得,結(jié)合(i)的結(jié)論求得,由此得到當時,取得最小值.【詳解】(I)由所以,因為,所以,即,所以,所以數(shù)列是遞增數(shù)列.(II)此時.(i)所以,有由(1)知是遞增數(shù)列,所以所以(ii)因為所以有.由由(i)知,所以所以所以當時,取得最小值.【點睛】本小題主要考查數(shù)列單調(diào)性的證明方法,考查裂項求和法,考查迭代法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.18、(1)(2)【解析】
(1)利用正弦定理實現(xiàn)邊角轉(zhuǎn)化,逆用兩角和的正弦公式,進行化簡,最后可求出角的大?。唬?)利用面積公式結(jié)合,可以求出的值,再利用余弦定理可以求出邊的長.【詳解】(1)在中,由正弦定理得,,故,,,代入,并兩邊同除以,得:,即,因為在中,,所以,故,又由可得,所以,同樣由得:.(2)因為的面積為,所以,又由(1)得:,所以,,又,所以,.由余弦定理得:所以.【點睛】本題考查了了正弦定理的應(yīng)用,考查了面積公式,考查了利用余弦定理求邊長,考查了數(shù)學(xué)運算能力.19、(1)(2)【解析】
試題分析:(1)根據(jù)題意,由三角函數(shù)的定義可得與的值,進而可得出與的值,從而可求與的值就,結(jié)合兩角和正切公式可得答案;(2)由兩角和的正切公式,可得出的值,再根據(jù)的取值范圍,可得出的取值范圍,進而可得出的值.由條件得cosα=,cosβ=.∵α,β為銳角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β為銳角,∴0<α+2β<,∴α+2β=20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式可求,利用誘導(dǎo)公式,二倍角公式即可計算得解;(Ⅱ)由已知利用二倍角的余弦函數(shù)公式可求cos2α的值,根據(jù)同角三角函數(shù)基本關(guān)系式可求tan2α的值,根據(jù)兩角和的正切函數(shù)公式即可計算得解.【詳解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度數(shù)據(jù)中心服務(wù)器租賃合同
- 2024醫(yī)院病房清潔服務(wù)合同
- 2024年展覽保險服務(wù)協(xié)議
- 2024年度0kv線路工程建設(shè)的合作開發(fā)合同
- 2024年度婚禮主持委托合同
- 2024年定制版太陽能系統(tǒng)維護合同
- 2024年度太陽能熱水系統(tǒng)安裝合同
- 2024年度城市供水供電供氣合同
- 2024年三人股東責(zé)任承擔協(xié)議
- 04版建筑工程合同
- 長松制度-薪酬管理全
- 數(shù)獨題目100題2(可打印)12951
- (完整版)《工程倫理》歷年真題
- 骨盆骨折PPT完整版
- 成人住院患者靜脈血栓栓塞癥的預(yù)防護理
- 空調(diào)安裝施工方案及空調(diào)安裝現(xiàn)場管理辦法
- 甘肅省黃金礦產(chǎn)資源概況
- 診所消防安全應(yīng)急方案
- 譯林版一年級上冊英語全冊課件
- 中小學(xué)德育工作指南考核試題及答案
- 凈現(xiàn)值NPV分析和總結(jié)
評論
0/150
提交評論