2025屆重慶市區(qū)縣高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第1頁(yè)
2025屆重慶市區(qū)縣高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第2頁(yè)
2025屆重慶市區(qū)縣高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第3頁(yè)
2025屆重慶市區(qū)縣高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第4頁(yè)
2025屆重慶市區(qū)縣高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆重慶市區(qū)縣高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,則()A. B. C. D.2.已知向量,,則,的夾角為()A. B. C. D.3.已知某圓柱的底面周長(zhǎng)為12,高為2,矩形是該圓柱的軸截面,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為()A. B. C.3 D.24.已知兩點(diǎn),若點(diǎn)是圓上的動(dòng)點(diǎn),則面積的最大值為()A.13 B.3 C. D.5.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為()A. B. C. D.6.函數(shù)f(x)=sinA.1 B.2 C.3 D.27.若實(shí)數(shù)滿(mǎn)足,則的最小值為()A.4 B.8 C.16 D.328.已知之間的幾組數(shù)據(jù)如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為中的前兩組數(shù)據(jù)和求得的直線方程為則以下結(jié)論正確的是()A. B. C. D.9.單位圓中,的圓心角所對(duì)的弧長(zhǎng)為()A. B. C. D.10.若函數(shù)的圖象可由函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度變換得到,則的解析式是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的零點(diǎn)個(gè)數(shù)為_(kāi)_________.12.用數(shù)學(xué)歸納法證明“”,在驗(yàn)證成立時(shí),等號(hào)左邊的式子是______.13.若滿(mǎn)足約束條件,的最小值為,則________.14.已知二面角為60°,動(dòng)點(diǎn)P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點(diǎn)之間距離的最小值為.15.在等比數(shù)列中,已知,則=________________.16.已知數(shù)列滿(mǎn)足則的最小值為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)計(jì)算:;(2)化簡(jiǎn):.18.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.19.已知函數(shù),且.(1)求的值;(2)求的最小正周期及單調(diào)遞增區(qū)間.20.已知,是函數(shù)的兩個(gè)相鄰的零點(diǎn).(1)求;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.(3)若關(guān)于的方程在上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.21.如圖所示,函數(shù)的圖象與軸交于點(diǎn),且該函數(shù)的最小正周期為.(1)求和的值;(2)已知點(diǎn),點(diǎn)是該函數(shù)圖象上一點(diǎn),點(diǎn)是的中點(diǎn),當(dāng)時(shí),求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

由,代入運(yùn)算即可得解.【詳解】解:因?yàn)?,,所?故選:A.【點(diǎn)睛】本題考查了兩角差的正切公式,屬基礎(chǔ)題.2、A【解析】

由題意得,即可得,再結(jié)合即可得解.【詳解】由題意知,則.,則,的夾角為.故選:A.【點(diǎn)睛】本題考查了向量數(shù)量積的應(yīng)用,屬于基礎(chǔ)題.3、A【解析】

由圓柱的側(cè)面展開(kāi)圖是矩形,利用勾股定理求解.【詳解】圓柱的側(cè)面展開(kāi)圖如圖,圓柱的側(cè)面展開(kāi)圖是矩形,且矩形的長(zhǎng)為12,寬為2,則在此圓柱側(cè)面上從到的最短路徑為線段,.故選:A.【點(diǎn)睛】本題考查圓柱側(cè)面展開(kāi)圖中的最短距離問(wèn)題,是基礎(chǔ)題.4、C【解析】

先求出直線方程,然后計(jì)算出圓心到直線的距離,根據(jù)面積的最大時(shí),以及高最大的條件,可得結(jié)果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點(diǎn)到最大距離為所以面積的最大值為故選:C【點(diǎn)睛】本題考查圓與直線的幾何關(guān)系以及點(diǎn)到直線的距離,屬基礎(chǔ)題.5、D【解析】

以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,再利用向量法求出異面直線AE與BF所成角的余弦值.【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1中棱長(zhǎng)為2,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),A(2,0,0),E(0,1,2),B(2,2,0),F(xiàn)(0,2,1),=(﹣2,1,2),=(﹣2,0,1),設(shè)異面直線AE與BF所成角的平面角為θ,則cosθ===,∴異面直線AE與BF所成角的余弦值為.故選D.【點(diǎn)睛】本題考查異面直線所成角的余弦值的求法,注意向量法的合理運(yùn)用,屬于基礎(chǔ)題.6、A【解析】

對(duì)sin(x+π3【詳解】∵f(x)=sin∴f(x)【點(diǎn)睛】考查三角恒等變換、輔助角公式及余弦函數(shù)的最值.7、B【解析】

由可以得到,利用基本不等式可求最小值.【詳解】因?yàn)椋?,因?yàn)?,故,故,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為8,故選B.【點(diǎn)睛】應(yīng)用基本不等式求最值時(shí),需遵循“一正二定三相等”,如果原代數(shù)式中沒(méi)有積為定值或和為定值,則需要對(duì)給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時(shí)要關(guān)注取等條件的驗(yàn)證.8、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′9、B【解析】

將轉(zhuǎn)化為弧度,即可得出答案.【詳解】,因此,單位圓中,的圓心角所對(duì)的弧長(zhǎng)為.故選B.【點(diǎn)睛】本題考查角度與弧度的轉(zhuǎn)化,同時(shí)也考查了弧長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.10、A【解析】

先化簡(jiǎn)函數(shù),然后再根據(jù)圖象平移得.【詳解】由已知,∴.故選A.【點(diǎn)睛】本題考查兩角和的正弦公式,考查三角函數(shù)的圖象平移變換,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

運(yùn)用三角函數(shù)的誘導(dǎo)公式先將函數(shù)化簡(jiǎn),再在同一直角坐標(biāo)系中做出兩支函數(shù)的圖像,觀察其交點(diǎn)的個(gè)數(shù)即得解.【詳解】由三角函數(shù)的誘導(dǎo)公式得,所以令,求零點(diǎn)的個(gè)數(shù)轉(zhuǎn)化求方程根的個(gè)數(shù),因此在同一直角坐標(biāo)系分別做出和的圖象,觀察兩支圖象的交點(diǎn)的個(gè)數(shù)為個(gè),注意在做的圖像時(shí)當(dāng)時(shí),,故得解.【點(diǎn)睛】本題考查三角函數(shù)的有界性和余弦函數(shù)與對(duì)數(shù)函數(shù)的交點(diǎn)情況,屬于中檔題.12、【解析】

根據(jù)左邊的式子是從開(kāi)始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因?yàn)樽筮叺氖阶邮菑拈_(kāi)始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點(diǎn)睛】項(xiàng)數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問(wèn)題的基礎(chǔ),也是易錯(cuò)點(diǎn),要使問(wèn)題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項(xiàng)的變化規(guī)律;二是相鄰兩項(xiàng)之間的變化規(guī)律.13、4【解析】

由約束條件得到可行域,取最小值時(shí)在軸截距最小,通過(guò)直線平移可知過(guò)時(shí),取最小值;求出點(diǎn)坐標(biāo),代入構(gòu)造出方程求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:取最小值時(shí),即在軸截距最小平移直線可知,當(dāng)過(guò)點(diǎn)時(shí),在軸截距最小由得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查現(xiàn)行規(guī)劃中根據(jù)最值求解參數(shù)的問(wèn)題,關(guān)鍵是能夠明確最值取得的點(diǎn),屬于常考題型.14、【解析】

如圖

分別作于A,于C,于B,于D,

連CQ,BD則,,

當(dāng)且僅當(dāng),即點(diǎn)A與點(diǎn)P重合時(shí)取最小值.

故答案選C.【點(diǎn)睛】15、【解析】16、【解析】

先利用累加法求出an=1+n2﹣n,所以,設(shè)f(n),由此能導(dǎo)出n=5或6時(shí)f(n)有最小值.借此能得到的最小值.【詳解】解:∵an+1﹣an=2n,∴當(dāng)n≥2時(shí),an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且對(duì)n=1也適合,所以an=n2﹣n+1.從而設(shè)f(n),令f′(n),則f(n)在上是單調(diào)遞增,在上是遞減的,因?yàn)閚∈N+,所以當(dāng)n=5或6時(shí)f(n)有最小值.又因?yàn)椋?,所以的最小值為故答案為【點(diǎn)睛】本題考查了利用遞推公式求數(shù)列的通項(xiàng)公式,考查了累加法.還考查函數(shù)的思想,構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)-2(2)【解析】

(1)利用特殊角的三角函數(shù)值求得表達(dá)式的值.(2)利用誘導(dǎo)公式化簡(jiǎn)所求表達(dá)式.【詳解】(1).(2).【點(diǎn)睛】本小題主要考查特殊角的三角函數(shù)值,考查誘導(dǎo)公式,屬于基礎(chǔ)題.18、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解析】

(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計(jì)算出的值.【詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【點(diǎn)睛】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時(shí)要利用三角恒等變換思想將三角函數(shù)的解析式化簡(jiǎn),利用正弦、余弦函數(shù)的性質(zhì)求解,考查運(yùn)算求解能力,屬于中等題.19、(1);(2)最小正周期為,單調(diào)遞增區(qū)間為,.【解析】

(1)因?yàn)?,所以,化?jiǎn)解方程即得.(2)由(1)可得求出函數(shù)的最小正周期,再利用復(fù)合函數(shù)和三角函數(shù)的圖像和性質(zhì)求函數(shù)的單調(diào)遞增區(qū)間得解.【詳解】解:(1)因?yàn)椋?,所以,即,解得.?)由(1)可得,則的最小正周期為.令,,解得,,故的單調(diào)遞增區(qū)間為,.【點(diǎn)睛】本題主要考查三角恒等變換和三角求值,考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于基礎(chǔ)題.20、(1);(2);(3)【解析】

(1)先化簡(jiǎn),再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問(wèn)題轉(zhuǎn)化為,根據(jù)三角函數(shù)的性質(zhì)求出的最大值,即可求出實(shí)數(shù)的取值范圍;(3)通過(guò)方程的解與函數(shù)圖象之間的交點(diǎn)關(guān)系,可將題意轉(zhuǎn)化為函數(shù)的圖象與直線有兩個(gè)交點(diǎn),即可由圖象求出實(shí)數(shù)的取值范圍.【詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時(shí),,的最大值為2,∴要使方程在上有兩個(gè)不同的解,即函數(shù)的圖象與直線有兩個(gè)交點(diǎn),由圖象可知,即,所以【點(diǎn)睛】本題主要考查三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及利用二倍角公式、兩

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論