湖南省長沙市湘一芙蓉中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
湖南省長沙市湘一芙蓉中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
湖南省長沙市湘一芙蓉中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
湖南省長沙市湘一芙蓉中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
湖南省長沙市湘一芙蓉中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省長沙市湘一芙蓉中學(xué)2025屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知某幾何體的三視圖如圖所示,則該幾何體的體積為A. B. C. D.2.如圖,網(wǎng)格紙上正方形小格邊長為,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積等于()A.B.C.D.3.已知的三個內(nèi)角之比為,那么對應(yīng)的三邊之比等于()A. B. C. D.4.已知兩點,,若點是圓上的動點,則△面積的最小值是A. B.6 C.8 D.5.直線的傾斜角為()A.30° B.60° C.120° D.150°6.三角形的一個角為60°,夾這個角的兩邊之比為,則這個三角形的最大角的正弦值為()A. B. C. D.7.在中,,則()A. B. C. D.8.圓和圓的公切線條數(shù)為()A.1 B.2 C.3 D.49.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.10.設(shè)m,n是兩條不同的直線,α?A.若m⊥β,n⊥β?,?n⊥α,則m⊥αC.若m⊥n,?n∥α,則m⊥α D.若m⊥n二、填空題:本大題共6小題,每小題5分,共30分。11.在中,若,則____________.12.已知,且,則的值是_______.13.設(shè)滿足不等式組,則的最小值為_____.14.在數(shù)列中,,則___________.15.已知函數(shù)分別由下表給出:123211123321則當(dāng)時,_____________.16.已知,則與的夾角等于___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)當(dāng)時,證明不等式:.18.正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.19.已知數(shù)列的前項和為,且,.(1)求證:數(shù)列的通項公式;(2)設(shè),,求.20.已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻(xiàn)愛心活動。(1)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?(2)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作,求事件M“抽取的2名同學(xué)來自同一年級”發(fā)生的概率。21.已知向量與向量的夾角為,且,.(1)求;(2)若,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)三視圖可知幾何體為三棱錐,根據(jù)棱錐體積公式求得結(jié)果.【詳解】由三視圖可知,幾何體為三棱錐三棱錐體積為:本題正確選項:【點睛】本題考查棱錐體積的求解,關(guān)鍵是能夠通過三視圖確定幾何體為三棱錐,且通過三視圖確定三棱錐的底面和高.2、C【解析】

由三視圖可知該幾何體是一個四棱錐,作出圖形即可求出表面積?!驹斀狻吭搸缀误w為四棱錐,如圖..選C.【點睛】本題考查了三視圖,考查了四棱錐的表面積,考查了學(xué)生的空間想象能力與計算能力,屬于基礎(chǔ)題。3、D【解析】∵已知△ABC的三個內(nèi)角之比為,∴有,再由,可得,故三內(nèi)角分別為.再由正弦定理可得三邊之比,故答案為點睛:本題考查正弦定理的應(yīng)用,結(jié)合三角形內(nèi)角和等于,很容易得出三個角的大小,利用正弦定理即出結(jié)果4、A【解析】

求得圓的方程和直線方程以及,利用三角換元假設(shè),利用點到直線距離公式和三角函數(shù)知識可求得,代入三角形面積公式可求得結(jié)果.【詳解】由題意知,圓的方程為:,直線方程為:,即設(shè)點到直線的距離:,其中當(dāng)時,本題正確選項:【點睛】本題考查點到直線距離的最值的求解問題,關(guān)鍵是能夠利用三角換元的方式將問題轉(zhuǎn)化為三角函數(shù)的最值的求解問題.5、D【解析】

由直線方程得到直線斜率,進(jìn)而得到其傾斜角.【詳解】因直線方程為,所以直線的斜率,故其傾斜角為150°.故選D【點睛】本題主要考查求直線的傾斜角,熟記定義即可,屬于基礎(chǔ)題型.6、B【解析】

由余弦定理,可得第三邊的長度,再由大角對大邊可得最大角,然后由正弦定理可得最大角的正弦值.【詳解】解:三角形的一個角為,夾這個角的兩邊之比為,設(shè)夾這個角的兩邊分別為和,則由余弦定理,可得第三邊的長度為,三角形的最大邊為,對應(yīng)的角最大,記為,則由正弦定理可得,故選:B.【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,考查了計算能力,屬于基礎(chǔ)題.7、B【解析】

根據(jù)向量的三角形法則進(jìn)行轉(zhuǎn)化求解即可.【詳解】∵,∴,又則故選:B【點睛】本題考查向量加減混合運算及其幾何意義,靈活應(yīng)用向量運算的三角形法則即可求解,屬于基礎(chǔ)題.8、B【解析】

判斷兩圓的位置關(guān)系,根據(jù)兩圓的位置關(guān)系判斷兩圓公切線的條數(shù).【詳解】圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,半徑長為.圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,半徑長為.圓心距為,由于,即,所以,兩圓相交,公切線的條數(shù)為,故選B.【點睛】本題考查兩圓公切線的條數(shù),本質(zhì)上就是判斷兩圓的位置關(guān)系,公切線條數(shù)與兩圓位置的關(guān)系如下:①兩圓相離條公切線;②兩圓外切條公切線;③兩圓相交條公切線;④兩圓內(nèi)切條公切線;⑤兩圓內(nèi)含沒有公切線.9、D【解析】

在正方形中連接,交于點,根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【點睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.10、A【解析】

依據(jù)立體幾何有關(guān)定理及結(jié)論,逐個判斷即可。【詳解】A正確:利用“垂直于同一個平面的兩條直線平行”及“兩條直線有一條垂直于一個平面,則另一條也垂直于該平面”,若m⊥β且n⊥β?,則m//n,又n⊥α,所以m⊥αB錯誤:若m∥β,?,?β⊥α,則C錯誤:若m⊥n,?n∥α,則m可能垂直于平面α,也可能平行于平面α,還可能在平面D錯誤:若m⊥n?,?n⊥β?,?β⊥α,則【點睛】本題主要考查立體幾何中的定理和結(jié)論,意在考查學(xué)生幾何定理掌握熟練程度。二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

根據(jù)正弦定理角化邊可得答案.【詳解】由正弦定理可得.故答案為:2【點睛】本題考查了正弦定理角化邊,屬于基礎(chǔ)題.12、【解析】

計算出的值,然后利用誘導(dǎo)公式可求得的值.【詳解】,,則,因此,.故答案為:.【點睛】本題考查利用誘導(dǎo)公式求值,同時也考查了同角三角函數(shù)基本關(guān)系的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.13、-6【解析】作出可行域,如圖內(nèi)部(含邊界),作直線,當(dāng)向下平移時,減小,因此當(dāng)過點時,為最小值.14、-1【解析】

首先根據(jù),得到是以,的等差數(shù)列.再計算其前項和即可求出,的值.【詳解】因為,.所以數(shù)列是以,的等差數(shù)列.所以.所以,,.故答案為:【點睛】本題主要考查等差數(shù)列的判斷和等差數(shù)列的前項和的計算,屬于簡單題.15、3【解析】

根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復(fù)合函數(shù)值求參數(shù),換元法是解題的關(guān)鍵,屬于基礎(chǔ)題.16、【解析】

利用再結(jié)合已知條件即可求解【詳解】由,即,故答案為:【點睛】本題考查向量的夾角計算公式,在考題中應(yīng)用廣泛,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)分和兩種情況討論,利用,可得出數(shù)列的通項公式;(2)由得,從而可得,即可證明出結(jié)論.【詳解】(1),,.①當(dāng)時,數(shù)列是各項均為的常數(shù)列,則;②當(dāng)時,數(shù)列是以為首項,以為公比的等比數(shù)列,,.當(dāng)時,也適合.綜上所述,;(2)由,得,,,,因此,.【點睛】本題考查數(shù)列的通項,考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.18、(1)(2)見解析【解析】

(1)因為數(shù)列的前項和滿足:,所以當(dāng)時,,即解得或,因為數(shù)列都是正項,所以,因為,所以,解得或,因為數(shù)列都是正項,所以,當(dāng)時,有,所以,解得,當(dāng)時,,符合所以數(shù)列的通項公式,;(2)因為,所以,所以數(shù)列的前項和為:,當(dāng)時,有,所以,所以對于任意,數(shù)列的前項和.19、(1);(2).【解析】

(1)利用即可求出答案;(2)利用裂項相消法即可求出答案.【詳解】解:(1)∵,當(dāng)時,,當(dāng)時,,∴,;(2)∵,∴.【點睛】本題主要考查數(shù)列已知求,考查裂項相消法求和,屬于中檔題.20、(1)應(yīng)分別從甲、乙、丙三個年級分別抽取3人,2人,2人(2)P【解析】

(1)由分層抽樣的性質(zhì)可得甲、乙、丙三個年級的學(xué)生志愿者人數(shù)之比為3:2:2,可得抽取7名同學(xué),應(yīng)分別從甲、乙、丙三個年級分別抽取3人,2人,2人;(2)從抽出的7名同學(xué)中隨機(jī)抽取2名的所有可能結(jié)果為21種,其中2名同學(xué)來自同一年級的所有可能結(jié)果為5種,可得答案.【詳解】解:(1)由已知,甲、乙、丙三個年級的學(xué)生志愿者人數(shù)之比為3:2:2因為采取分層抽樣的方法抽取7名同學(xué),所以應(yīng)分別從甲、乙、丙三個年級分別抽取3人,2人,2人(2)從抽出的7名同學(xué)中隨機(jī)抽取2名的所有可能結(jié)果為:ABACADAEAFAGBCBDBEBFBGCDCECF共21種CGDEDFDGEFEGFG不妨設(shè)抽出的7名同學(xué)中,來自甲年級的是A,B,C,來自乙年級的是D,E,來自丙年級的是F,G,則2名同學(xué)來自同一年級的所有可能結(jié)果為:AB,AC,BC,DE,F(xiàn)G共5種P【點睛】本題主要考查分層

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論