版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省九校高三下學(xué)期聯(lián)合考試新高考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知中內(nèi)角所對應(yīng)的邊依次為,若,則的面積為()A. B. C. D.2.已知,其中是虛數(shù)單位,則對應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.3.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.4.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.05.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612426.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,7.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.48.函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)橫坐標(biāo)的和為()A. B. C. D.9.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.410.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.11.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.14.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,,則球的表面積為__________.15.點(diǎn)在雙曲線的右支上,其左、右焦點(diǎn)分別為、,直線與以坐標(biāo)原點(diǎn)為圓心、為半徑的圓相切于點(diǎn),線段的垂直平分線恰好過點(diǎn),則該雙曲線的漸近線的斜率為__________.16.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為實(shí)數(shù),且.(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).18.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.19.(12分)已知橢圓經(jīng)過點(diǎn),離心率為.(1)求橢圓的方程;(2)經(jīng)過點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱.連接.求證:存在實(shí)數(shù),使得成立.20.(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實(shí)數(shù)a,b滿足1a+121.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.22.(10分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由余弦定理可得,結(jié)合可得a,b,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計(jì)算能力,是一道容易題.2、C【解析】
利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.3、B【解析】
設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過作交于點(diǎn),連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“=”號,∴的最小值為.
故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.4、B【解析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.5、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。6、A【解析】
設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.7、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.8、B【解析】
根據(jù)兩個(gè)函數(shù)相等,求出所有交點(diǎn)的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)的和,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).9、A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題10、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.11、B【解析】
由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點(diǎn)睛】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時(shí)熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.12、C【解析】
根據(jù)函數(shù)的對稱性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時(shí),,所以不關(guān)于直線對稱,則錯(cuò)誤;B中,,所以在區(qū)間上為減函數(shù),則錯(cuò)誤;D中,,而,則,所以不關(guān)于直線對稱,則錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因?yàn)?,所以.又因?yàn)椋覟殇J角,所以.由余弦定理得,即,解得,所以故答案為:【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、【解析】
如圖所示,將三棱錐補(bǔ)成長方體,球?yàn)殚L方體的外接球,長、寬、高分別為,計(jì)算得到,得到答案.【詳解】如圖所示,將三棱錐補(bǔ)成長方體,球?yàn)殚L方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點(diǎn)睛】本題考查了三棱錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長方體是解題的關(guān)鍵.15、【解析】如圖,是切點(diǎn),是的中點(diǎn),因?yàn)?,所以,又,所以,,又,根?jù)雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.16、【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】
(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時(shí),,在上單調(diào)遞增,即函數(shù)的值域?yàn)椋划?dāng)時(shí),,在上單調(diào)遞減,即函數(shù)的值域?yàn)?;?dāng)時(shí),易得時(shí),,在上單調(diào)遞增,時(shí),,在上單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最大值,最小值為,中最小的,當(dāng)時(shí),,最小值;當(dāng),,最小值;綜上,當(dāng)時(shí),函數(shù)的值域?yàn)?,?dāng)時(shí),函數(shù)的值域,當(dāng)時(shí),函數(shù)的值域?yàn)?,?dāng)時(shí),函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求單調(diào)區(qū)間和極值,以及利用導(dǎo)數(shù)研究含參函數(shù)在給定區(qū)間的值域,考查學(xué)生的運(yùn)算求解能力,體現(xiàn)了分類討論的數(shù)學(xué)思想.18、(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)?,所以,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(?。?,則直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.19、(1)(2)證明見解析【解析】
(1)由點(diǎn)可得,由,根據(jù)即可求解;(2)設(shè)直線的方程為,聯(lián)立可得,設(shè),由韋達(dá)定理可得,再根據(jù)直線的斜率公式求得;由點(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對稱,可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線的方程為,聯(lián)立,可得,設(shè),則有,因?yàn)?所以,又因?yàn)辄c(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對稱,所以,即,則有,由點(diǎn)在橢圓上,得,所以,所以,即,所以存在實(shí)數(shù),使成立【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線的斜率公式的應(yīng)用,考查運(yùn)算能力.20、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解析】
(Ⅰ)由題意結(jié)合不等式的性質(zhì)零點(diǎn)分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當(dāng)x>1時(shí),f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當(dāng)-2≤x≤1時(shí),f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當(dāng)x<-2時(shí),f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當(dāng)且僅當(dāng)-2≤x≤1時(shí),等號成立.∴f(x)的最小值m=3.∴[(即2a當(dāng)且僅當(dāng)2a×1又1a+1b=∴2a【點(diǎn)睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,絕對值三角不等式求最值的方法等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.21、(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點(diǎn)D作DF⊥SE于F,證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版游戲版權(quán)采購合同示范文本3篇
- 湘潭大學(xué)《體育基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年版經(jīng)營權(quán)作抵押借款協(xié)議樣例版B版
- 二零二五版戶外廣告資源代理合作框架協(xié)議3篇
- 2024消防設(shè)備研發(fā)與制造合同范本3篇
- 二零二五年度藝術(shù)品收藏交易合同3篇
- 2025年度智慧養(yǎng)老服務(wù)平臺建設(shè)與運(yùn)營合同3篇
- 桐城師范高等??茖W(xué)?!侗硌莼A(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版板房租賃合同含物業(yè)管理及保潔服務(wù)3篇
- 四川文軒職業(yè)學(xué)院《機(jī)械工程材料B》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海紐約大學(xué)自主招生面試試題綜合素質(zhì)答案技巧
- 辦公家具項(xiàng)目實(shí)施方案、供貨方案
- 2022年物流服務(wù)師職業(yè)技能競賽理論題庫(含答案)
- ?;钒踩僮饕?guī)程
- 連鎖遺傳和遺傳作圖
- DB63∕T 1885-2020 青海省城鎮(zhèn)老舊小區(qū)綜合改造技術(shù)規(guī)程
- 高邊坡施工危險(xiǎn)源辨識及分析
- 中海地產(chǎn)設(shè)計(jì)管理程序
- 簡譜視唱15942
- 《城鎮(zhèn)燃?xì)庠O(shè)施運(yùn)行、維護(hù)和搶修安全技術(shù)規(guī)程》(CJJ51-2006)
- 項(xiàng)目付款審核流程(visio流程圖)
評論
0/150
提交評論