版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鎮(zhèn)江市丹徒高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.2.復(fù)數(shù)()A. B. C.0 D.3.已知函數(shù),若時(shí),恒成立,則實(shí)數(shù)的值為()A. B. C. D.4.函數(shù)()的圖象的大致形狀是()A. B. C. D.5.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.6.“幻方”最早記載于我國(guó)公元前500年的春秋時(shí)期《大戴禮》中.“階幻方”是由前個(gè)正整數(shù)組成的—個(gè)階方陣,其各行各列及兩條對(duì)角線所含的個(gè)數(shù)之和(簡(jiǎn)稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.457.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π8.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.49.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b10.中,角的對(duì)邊分別為,若,,,則的面積為()A. B. C. D.11.將函數(shù)向左平移個(gè)單位,得到的圖象,則滿足()A.圖象關(guān)于點(diǎn)對(duì)稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對(duì)稱C.圖象關(guān)于直線對(duì)稱,在上的最小值為1D.最小正周期為,在有兩個(gè)根12.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線被圓截得的弦長(zhǎng)為2,則的值為__14.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____15.已知,則________.(填“>”或“=”或“<”).16.的二項(xiàng)展開式中,含項(xiàng)的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是等差數(shù)列,前項(xiàng)和為,且,.(1)求.(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知不等式對(duì)于任意的恒成立.(1)求實(shí)數(shù)m的取值范圍;(2)若m的最大值為M,且正實(shí)數(shù)a,b,c滿足.求證.19.(12分)在平面直角坐標(biāo)系中,為直線上動(dòng)點(diǎn),過點(diǎn)作拋物線:的兩條切線,,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.20.(12分)為增強(qiáng)學(xué)生的法治觀念,營(yíng)造“學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開展了“憲法小衛(wèi)士”活動(dòng),并組織全校學(xué)生進(jìn)行法律知識(shí)競(jìng)賽.現(xiàn)從全校學(xué)生中隨機(jī)抽取50名學(xué)生,統(tǒng)計(jì)他們的競(jìng)賽成績(jī),已知這50名學(xué)生的競(jìng)賽成績(jī)均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競(jìng)賽成績(jī)?cè)趦?nèi)定義為“合格”,競(jìng)賽成績(jī)?cè)趦?nèi)定義為“不合格”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“法律知識(shí)競(jìng)賽成績(jī)是否合格”與“是否是高一新生”有關(guān)?合格不合格合計(jì)高一新生12非高一新生6合計(jì)(2)在(1)的前提下,按“競(jìng)賽成績(jī)合格與否”進(jìn)行分層抽樣,從這50名學(xué)生中抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生,求這2名學(xué)生競(jìng)賽成績(jī)都合格的概率.參考公式及數(shù)據(jù):,其中.21.(12分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿足,求二面角的余弦值.22.(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
函數(shù)的定義域應(yīng)滿足故選C.2、C【解析】略3、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點(diǎn),解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因?yàn)闀r(shí),恒成立,于是兩函數(shù)必須有相同的零點(diǎn),所以,解得.故選:D【點(diǎn)睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點(diǎn)問題,考查不等式的恒成立問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、C【解析】
對(duì)x分類討論,去掉絕對(duì)值,即可作出圖象.【詳解】故選C.【點(diǎn)睛】識(shí)圖常用的方法(1)定性分析法:通過對(duì)問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問題;(2)定量計(jì)算法:通過定量的計(jì)算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.5、B【解析】
根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.6、B【解析】
計(jì)算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點(diǎn)睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.7、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.8、D【解析】可以是共4個(gè),選D.9、B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.10、A【解析】
先求出,由正弦定理求得,然后由面積公式計(jì)算.【詳解】由題意,.由得,.故選:A.【點(diǎn)睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時(shí)要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.11、C【解析】
由輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個(gè)單位,可得,由正弦函數(shù)的性質(zhì)可知,的對(duì)稱中心滿足,解得,所以A、B選項(xiàng)中的對(duì)稱中心錯(cuò)誤;對(duì)于C,的對(duì)稱軸滿足,解得,所以圖象關(guān)于直線對(duì)稱;當(dāng)時(shí),,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對(duì)于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時(shí)僅有一個(gè)解為,所以D錯(cuò)誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡(jiǎn),三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.12、C【解析】
轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)弦長(zhǎng)為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標(biāo)代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因?yàn)橹本€被圓截得的弦長(zhǎng)為2,
所以直線經(jīng)過圓心(1,1),
,解得.故答案為:1.【點(diǎn)睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.14、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.15、【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點(diǎn)睛】本題考查對(duì)數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.16、【解析】
寫出二項(xiàng)展開式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式、需熟記二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)得,利用乘公比錯(cuò)位相減,即可求解數(shù)列的前n項(xiàng)和.【詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,,由,得,所以,解得,所以數(shù)列的通項(xiàng)公式為.(2)由(1)得,,,兩式相減得,,即.【點(diǎn)睛】本題主要考查等差的通項(xiàng)公式、以及“錯(cuò)位相減法”求和的應(yīng)用,此類題目是數(shù)列問題中的常見題型,解答中確定通項(xiàng)公式是基礎(chǔ),準(zhǔn)確計(jì)算求和是關(guān)鍵,易錯(cuò)點(diǎn)是在“錯(cuò)位”之后求和時(shí),弄錯(cuò)等比數(shù)列的項(xiàng)數(shù),能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計(jì)算能力等.18、(1)(2)證明見解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時(shí)為增函數(shù),由此可得出答案;(2)由(1)知,,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論.【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時(shí)取等號(hào)),又(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)),由題意得,則,解得,故的取值范圍是;法二:因?yàn)閷?duì)于任意恒有成立,即,令,易知是偶函數(shù),且時(shí)為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的恒成立問題,考查基本不等式的應(yīng)用,屬于中檔題.19、(1)見解析(2)直線過定點(diǎn).【解析】
(1)設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,設(shè)出點(diǎn)坐標(biāo)并代入切線的方程,同理將點(diǎn)坐標(biāo)代入切線的方程,利用韋達(dá)定理求得線段中點(diǎn)的橫坐標(biāo),由此判斷出軸.(2)求得點(diǎn)的縱坐標(biāo),由此求得點(diǎn)坐標(biāo),求得直線的斜率,由此求得直線的方程,化簡(jiǎn)后可得直線過定點(diǎn).【詳解】(1)設(shè)切點(diǎn),,,∴切線的斜率為,切線:,設(shè),則有,化簡(jiǎn)得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點(diǎn).【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線過定點(diǎn)問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1)見解析;(2)【解析】
(1)補(bǔ)充完整的列聯(lián)表如下:合格不合格合計(jì)高一新生121426非高一新生18624合計(jì)302050則的觀測(cè)值,所以有的把握認(rèn)為“法律知識(shí)競(jìng)賽成績(jī)是否合格”與“是否是高一新生”有關(guān).(2)抽取的5名學(xué)生中競(jìng)賽成績(jī)合格的有名學(xué)生,記為,競(jìng)賽成績(jī)不合格的有名學(xué)生,記為,從這5名學(xué)生中隨機(jī)抽取2名學(xué)生的基本事件有:,共10種,這2名學(xué)生競(jìng)賽成績(jī)都合格的基本事件有:,共3種,所以這2名學(xué)生競(jìng)賽成績(jī)都合格的概率為.21、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并表示出,由空間向量數(shù)量積運(yùn)算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點(diǎn)在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運(yùn)算求得兩個(gè)平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,∵,,點(diǎn)為棱的中點(diǎn).∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點(diǎn)在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點(diǎn)睛】本題考查了空間向量的綜合應(yīng)用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計(jì)算量較大,屬于中檔題.22、(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標(biāo)方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉(zhuǎn)換關(guān)系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 切割機(jī)項(xiàng)目可行性研究報(bào)告
- 2025技術(shù)保密合同范文技術(shù)保密協(xié)議書范文2
- 2025白酒代理合同范例
- 2025二手車買賣合同范本協(xié)議書
- 2025電視購銷的合同范本
- 2025電腦維護(hù)承包合同范本
- 2025龍長(zhǎng)江訴巫山縣汽車客運(yùn)站客運(yùn)合同糾紛案
- 2025中學(xué)生校外培訓(xùn)管理服務(wù)合同
- 2025秘密的技術(shù)內(nèi)容技術(shù)咨詢合同
- 2025二級(jí)建造師建設(shè)工程法規(guī)及相關(guān)知識(shí)考點(diǎn)勞動(dòng)合同的解除
- 信息安全意識(shí)培訓(xùn)課件
- Python試題庫(附參考答案)
- MOOC 理解馬克思-南京大學(xué) 中國(guó)大學(xué)慕課答案
- 涂色畫簡(jiǎn)筆畫已排可直接打印涂色
- 空調(diào)維修派工單(共1頁)
- 運(yùn)動(dòng)場(chǎng)監(jiān)理大綱
- 特種設(shè)備日常運(yùn)行記錄表(共4頁)
- 部編本語文八年級(jí)上全冊(cè)文言文課下注釋
- 十二種健康教育印刷資料
- RTO處理工藝PFD計(jì)算
- 凱旋帝景地產(chǎn)杯籃球爭(zhēng)霸賽方案
評(píng)論
0/150
提交評(píng)論