2025屆豫東名校高一下數(shù)學期末復習檢測試題含解析_第1頁
2025屆豫東名校高一下數(shù)學期末復習檢測試題含解析_第2頁
2025屆豫東名校高一下數(shù)學期末復習檢測試題含解析_第3頁
2025屆豫東名校高一下數(shù)學期末復習檢測試題含解析_第4頁
2025屆豫東名校高一下數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆豫東名校高一下數(shù)學期末復習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在直三棱柱(側(cè)棱垂直于底面)中,若,,,則其外接球的表面積為()A. B. C. D.2.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形3.設(shè),滿足約束條件,則目標函數(shù)的最大值是()A.3 B. C.1 D.4.已知{an}是等差數(shù)列,且a2+a5+a8+a11=48,則a6+a7=()A.12 B.16 C.20 D.245.對數(shù)列,若區(qū)間滿足下列條件:①;②,則稱為區(qū)間套.下列選項中,可以構(gòu)成區(qū)間套的數(shù)列是()A.;B.C.D.6.設(shè)實數(shù)滿足約束條件,則的最大值為()A. B.9 C.11 D.7.在中,,點是內(nèi)(包括邊界)的一動點,且,則的最大值是()A. B. C. D.8.在中,若,則()A. B. C. D.9.如圖是一個正方體的表面展開圖,若圖中“努”在正方體的后面,那么這個正方體的前面是()A.定 B.有 C.收 D.獲10.已知正實數(shù)滿足,則的最大值為()A.2 B. C.3 D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值為___________.12.在數(shù)列中,已知,,記為數(shù)列的前項和,則_________.13.中,,,,則________.14.某銀行一年期定期儲蓄年利率為2.25%,如果存款到期不取出繼續(xù)留存于銀行,銀行自動將本金及80%的利息(利息須交納20%利息稅,由銀行代交)自動轉(zhuǎn)存一年期定期儲蓄,某人以一年期定期儲蓄存入銀行20萬元,則5年后,這筆錢款交納利息稅后的本利和為________元.(精確到1元)15.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內(nèi)切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.16.若扇形的周長是,圓心角是度,則扇形的面積(單位)是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為數(shù)列的前項和,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.已知為等差數(shù)列,且,.求的通項公式;若等比數(shù)列滿足,,求的前n項和公式.19.設(shè)Sn為數(shù)列{an}的前n項和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并證明:數(shù)列{an+1}為等比數(shù)列;(1)設(shè)bn=log1(a3n+1),數(shù)列{}的前n項和為Tn,求證:1≤18Tn<1.20.如圖,在三棱錐中,,,,,為線段的中點,為線段上一點.(1)求證:平面平面;(2)當平面時,求三棱錐的體積.21.如圖長方體中,,分別為棱,的中點(1)求證:平面平面;(2)請在答題卡圖形中畫出直線與平面的交點(保留必要的輔助線),寫出畫法并計算的值(不必寫出計算過程).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)題意,將直三棱柱擴充為長方體,其體對角線為其外接球的直徑,可得半徑,即可求出外接球的表面積.【詳解】∵,,∠ABC=90°,∴將直三棱柱擴充為長、寬、高為2、2、3的長方體,其體對角線為其外接球的直徑,長度為,∴其外接球的半徑為,表面積為=17π.故選:A.【點睛】本題考查幾何體外接球,通常將幾何體進行割補成長方體,幾何體外接球等同于長方體外接球,利用長方體外接球直徑等于體對角線長求出半徑,再求出球的體積和表面積即可,屬于簡單題.2、D【解析】

利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計算能力,熟練掌握余弦定理是解答本題的關(guān)鍵.3、C【解析】

作出不等式組對應的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標函數(shù)的最大值.【詳解】作出不等式組對應的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當直線經(jīng)過點時,最大.,解得,即,所以的最大值為1.故答案為選C【點睛】本題給出二元一次不等式組,求目標函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.4、D【解析】由等差數(shù)列的性質(zhì)可得,則,故選D.5、C【解析】由題意,得為遞增數(shù)列,為遞減數(shù)列,且當時,;而與與均為遞減數(shù)列,所以排除A,B,D,故選C.考點:新定義題目.6、C【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】作出約束條件表示的可行域如圖,化目標函數(shù)為,聯(lián)立,解得,由圖可知,當直線過點時,z取得最大值11,故選:C.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.7、B【解析】

根據(jù)分析得出點的軌跡為線段,結(jié)合圖形即可得到的最大值.【詳解】如圖:取,,,點是內(nèi)(包括邊界)的一動點,且,根據(jù)平行四邊形法則,點的軌跡為線段,則的最大值是,在中,,,,,故選:B【點睛】此題考查利用向量方法解決平面幾何中的線段長度最值問題,數(shù)形結(jié)合處理可以避免純粹的計算,降低難度.8、A【解析】

由已知利用余弦定理即可解得的值.【詳解】解:,,,由余弦定理可得:,解得:,故選:A.【點睛】本題主要考查余弦定理在解三角形中的應用,屬于基礎(chǔ)題.9、B【解析】

利用正方體及其表面展開圖的特點以及題意解題,把“努”在正方體的后面,然后把平面展開圖折成正方體,然后看“努”相對面.【詳解】解:這是一個正方體的平面展開圖,共有六個面,其中面“努”與面“有”相對,所以圖中“努”在正方體的后面,則這個正方體的前面是“有”.故選:.【點睛】本題考查了正方形相對兩個面上的文字問題,同時考查空間想象能力.注意正方體的空間圖形,從相對面入手,分析及解答問題,屬于基礎(chǔ)題.10、B【解析】

由,然后由基本不等式可得最大值.【詳解】,當且僅當,即時,等號成立.∴所求最大值為.故選:B.【點睛】本題考查用基本不等式求最值,注意基本不等式求最值的條件:一正二定三相等.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

=12、【解析】

根據(jù)數(shù)列的遞推公式求出該數(shù)列的前幾項,找出數(shù)列的周期性,從而求出數(shù)列的前項和的值.【詳解】對任意的,,.則,,,,,,所以,.,且,,故答案為:.【點睛】本題考查數(shù)列遞推公式的應用,考查數(shù)列周期性的應用,解題時要結(jié)合遞推公式求出數(shù)列的前若干項,找出數(shù)列的規(guī)律,考查推理能力和計算能力,屬于中等題.13、7【解析】

在中,利用余弦定理得到,即可求解,得到答案.【詳解】由余弦定理可得,解得.故答案為:7.【點睛】本題主要考查了余弦定理的應用,其中解答中熟記三角形的余弦定理,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、218660【解析】

20萬存款滿一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【詳解】20萬存款滿一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【點睛】本題主要考查了銀行存款的復利問題,由固定公式可用,本息和=本金×(1+利率×(1-15、825【解析】

以AB,BC所在直線為坐標軸建立平面直角坐標系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標軸建立平面直角坐標系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當k>﹣3時,4(k+3)25≥825,當且僅當4(k+3),即k3時取等號;②當k<﹣3時,則4(k+3)23≥823,當且僅當﹣4(k+3),即k3時取等號.故答案為:825【點睛】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學生對這些知識的理解掌握水平.16、16【解析】

根據(jù)已知條件可計算出扇形的半徑,然后根據(jù)面積公式即可計算出扇形的面積.【詳解】設(shè)扇形的半徑為,圓心角弧度數(shù)為,所以即,所以,所以.故答案為:.【點睛】本題考查角度與弧度的轉(zhuǎn)化以及扇形的弧長和面積公式,難度較易.扇形的弧長公式:,扇形的面積公式:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由即可求得通項公式;(2)由(1)中所求的,以及,可得,再用裂項求和求解前項和即可.【詳解】(1)當時,整理得,即數(shù)列是以首項為,公比為2的等比數(shù)列,故(2)由(1)得,,故=故數(shù)列的前項和.【點睛】本題考查由和之間的關(guān)系求解數(shù)列的通項公式,以及用裂項求和求解前項和,屬數(shù)列綜合基礎(chǔ)題.18、(1);(2).【解析】

設(shè)等差數(shù)列的公差為d,由已知列關(guān)于首項與公差的方程組,求得首項與公差,則的通項公式可求;求出,進一步得到公比,再由等比數(shù)列的前n項和公式求解.【詳解】為等差數(shù)列,設(shè)公差為d,由已知可得,解得,.;由,,等比數(shù)列的公比,的前n項和公式.【點睛】本題考查等差數(shù)列的通項公式,考查等比數(shù)列的前n項和,是中檔題.19、(1)見解析;(1)見解析【解析】

(1)可令求得的值;再由數(shù)列的遞推式,作差可得,可得數(shù)列為首項為1,公比為1的等比數(shù)列;(1)由(1)求得,,再由數(shù)列的裂項相消求和,可得,再由不等式的性質(zhì)即可得證.【詳解】(1)當時,,即,∴,當時,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴數(shù)列是首項為,公比為1的等比數(shù)列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【點睛】本題主要考查了數(shù)列的遞推式的運用,考查等比數(shù)列的定義和通項公式、求和公式的運用,考查數(shù)列的裂項相消求和,化簡運算能力,屬于中檔題.20、(1)見證明;(2)【解析】

(1)利用線面垂直判定定理得平面,可得;根據(jù)等腰三角形三線合一得,利用線面垂直判定定理和面面垂直判定定理可證得結(jié)論;(2)利用線面平行的性質(zhì)定理可得,可知為中點,利用體積橋可知,利用三棱錐體積公式可求得結(jié)果.【詳解】(1)證明:,平面又平面,為線段的中點平面平面平面平面(2)平面,平面平面為中點為中點三棱錐的體積為【點睛】本題考查面面垂直的證明、三棱錐體積的求解,涉及到線面垂直的判定和性質(zhì)定理、面面垂直的判定定理、線面平行的性質(zhì)定理、棱錐體積公式、體積橋方法的應用,屬于常考題型.21、(1)見證明;(2);畫圖見解析【解析】

(1)推導出平面,得出,得出,從而得到,進而證出平面,由此證得平面平面.(2)根據(jù)通過輔助線推出線面平行再推出線線平行,再根據(jù)“一條和平面不平行的直線與平面的公共點即為直線與平面的交點”得到點位置,然后計算的值.【詳解】(1)證明:在長方體中,,分別為棱,的中點,所以平面,則,在中,,在中,,所以,因為在中,,所以,所以,又因為,所以平面,因為平面,所以平面平面(2)如圖所示:設(shè),連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論